

Electron tubes

Book T16

1988

Black and white TV picture tubes

Monochrome data graphic display tubes

Deflection units

MONOCHROME TUBES AND DEFLECTION UNITS

	oage
Selection guide	
Black & white TV picture tubes	4
Deflection units for black & white TV picture tubes	5
Monochrome data graphic display tubes	6
Flat square monochrome display tubes	7
Flat monochrome display tubes	7
Deflection units for monochrome data graphic displays	8
Recommended combinations for monochrome data graphic displays	10
General	
List of symbols	13
General operational recommendations	
General data on monochrome display tubes	21
Type designation	29
Resolution characteristics for the new generation mark 2 gun	
New generation mark 2 gun	
Reference line gauges	
Bases	
Device specifications	
Black & white TV picture tubes	49
Deflection units for black & white TV picture tubes	
Monochrome data graphic display tubes	
Deflection units for monochrome data graphic display tubes	
Conversion list (catalogue number-to-type number)	555

SELECTION GUIDE

BLACK & WHITE TV PICTURE TUBES

			7						
face	type	deflection	neck	max.	٧٤/١٩	\ a	Vg4	V _{g2}	page
		26 E	E E	length mm	V/mA	kV	>	^	
31 cm (12 in)	A31-322W	006	20	280	11/140	12	0-130	130	51
34 cm (14 in)	A34-111W	006	20	287	11/140	12	0-130	130	61
44 cm (17 in)	A44-510W A44-520W	110° 110°	20 28,6	288 291	11/140 6,3/240	15 20	0-130 0-130	130 130	71 83
50 cm (20 in)	A50-520W	1100	28,6	319	6,3/240	20	0-130	130	95

DEFLECTION UNITS FOR BLACK & WHITE TV PICTURE TUBES

tube face	type	deflection	tube neck	line coils	soils	field coils	coils		sensitivity		page
diagonal		angle	diameter	induct-	resist-	induct-	resist-	at	raster sca	raster scan current	
				ance	ance	auce	auce	EH3	line	field	
			mm	Ηπ	75	E	75	KV	A(p-p)	A(p-p)	
24 cm (9 in)	AT1077/01	900	20	475	0,80	72	40	10	2,35	0,21	115
31/34 cm (12/14 in)	AT1077/02	₀ 06	20	436	08'0	89	33	12	2,52	0,22	119
44/50 cm (17/20 in)	AT1040/04	1100	28,6	2090	3,55	17,0	7,37	18	2,03	0,47	109

SELECTION GUIDE

MONOCHROME DATA GRAPHIC DISPLAY TUBES

			1									
page	125	139	151	163	237	265	223	253	279	291	199	211
resolution (approx.) (number of lines)	1300	1000	1300	800	1300	1000	1300	1000	1300	1300	1500	1500
V _g 2	400	400	400	130	400	400	400	400	400	400	400	400
V _a KV	12	12	12	12	12	12	12	12	12	12	17	17
V _f /I _f V/mA	12/130	12/75	12/75	11/140	12/130	12/75	12/130	12/75	12/75	12/75	6,3/240	12/130
max. overall length mm	227	227	227	227	772	277	280	280	277	277	241	241
neck diameter mm	20	20	20	20	20	20	20	70	20	20	28,6	28,6
useful screen diagonal mm	222,5	222,5	222,5	222,5	295	295	292	292	295	295	295	295
deflection angle	006	₀ 06	006	006	006	006	006	006	006	006	1100	1100
type	M24-306 M24-308 M24-310 M24-328	M24-322 M24-326	M24-330	M24-511W M24-512W M24-514W	M31-340 M31-342 M31-344 M31-346 M31-348	M31-362 M31-364 M31-366	M31-336 M31-338 M31-350	M31-354	M31-380	M31-382	M31-326 M31-370	M31-328
face diagonal		24 cm (9 in)					31 cm (12 in)			L		L

-	-										
	page			303	315		375		393	405	417
	resolution (approx.)		(number of lines)	1300	1000		1500		1500	1500	1400
	V _{g2}		>	400	400		400		400	400	400
	\ \ 		k\	14	14		17		17	20	20
	V _f /I _f		V/mA	12/130	12/75		6,3/240		12/130	6,3/240	6,3/240
	max.	overall	mm	287	287		279		279	291	319
	neck	glameter	mm	20	20		28,6		28,6	28,6	28,6
	useful	screen diagonal	mm	322	322		352		352	413	473
	deflection	angle		₀ 06	₀ 06		1100		1100	1140	1140
	type			M32EAA M32EBF	M32EAB M32EAK	M38-328 M38-330 M38-332	M38-334 M38-336	M38-338 M38-342 M38-344	M38-346 M38-348	M41EAA0	M47EAA0
	face	glagonal		34 cm	(14 in)		38 cm (15 in)			44 cm (17 in)	50 cm (20 in)

FLAT SQUARE MONOCHROME DISPLAY TUBES

	175	187	363
	1300	1000	1500
	400	400	400
	12	12	17
	12/130	12/75	6,3/240
	275	275	276
i	20	20	28,6
	294	294	363
	₀ 06	006	1100
	M29EAA M29EAB	M29ECA M29ECB	M36ECJ
	31 cm	(12 in)	36 cm (15 in)

SELECTION GUIDE

C	1	1
CLC	ï	ı
ī	Y	ì
-	=	1
ī	_	_
Г		
•	>	_
′	-	-
	4	ì
7	7	_
	7	
2	_	_
۵	_	1
_		
Ē	1	J
3	2	>
Ī	_	1
2	ĭ	_
=	÷	=
7	Ļ	_
١	_	!
()
2	Z	
7	_	١
1	Ë	_
4	2	_
L		
ľ		_
	4	١
ī	_	
L	L	

face	type	deflection	n useful		neck	max.		٧٤/١١	- 8	V _{g2}	resolution (approx.)	approx.)	page
diagonal		angle	screen		diameter	overall							
			diagona	nal		length							
			mm	mm	m	mm	^	V/mA	× >	>	(number of lines)	lines)	
	M32EBJ M32EBL	o06	320	20		282	12	12/130	14	400	1300		327
34 cm (14 in)	M32EBM M32EBN	o06	320	20		282	12	12/75	14	400	1000		339
	M32EBY	006	320	20		282	12	12/130	14	400	1300		351
	DEFLE(DEFLECTION UNITS	INITS	FOR N	JONO	CHRC	ME D	ATA G	RAPH	IC DIS	FOR MONOCHROME DATA GRAPHIC DISPLAY TUBES	JBES	
tube face	type	def	deflection	tube neck		line coils	<u>s</u>	field	field coils		sensitivity		bage
alagonal		angle	<u>e</u>	diameter		÷	resist-	induct-	resist-	at	raster sca	raster scan current	
					ance		ance	ance	ance	<u>=</u>	line	field	
				шш	Ηπ		CS	шH	CS	×	A(p-p)	A(p-p)	
	AT1077/		•	20	475		08'0	72	40	10	2,35	0,21	495
27 000	AT1077/	7/01A 90°	_	20	475		0,80	72	40	9	2,32	0,21	499
(4: 0)	AT1077/			70	470		0,94	72	4	9	2,32	0,21	503
(== 6)	AT1079/			20	480		06'0	9	=	12	2,60	0,47	527
	AT1079/	'9/35 90°	_	20	247		0,53	6,85	4,10	12	3,60	0,77	531
29 cm	AT1079/	*	0	20	310		99'0	23,8	13,6	12	3,05	0,39	547
(12 in)	AT1079/	⁰ /20 90°	0	20	320		0,61	23,8	13,6	14	3,25	0,46	551
	AT1079/	00/6	_	20	330		99'0	52	13,0	12	3,00	0,38	202
21 cm	AT1079/			50	480		06'0	<u>8</u>	11,5	12	2,50	0,46	511
(12 in)	AT1079/			70	480		0,00	<u>8</u>	=	12	2,50	0,45	515
/111 71 /	AT1079/	79/10 90°	0 (200	247		0,53	6,85	4,10	12	3,50	0,73	519
	A110/9/			70	745	1	0,53	6,85	4,10	71	3,50	0,73	523
31 cm (12 in)	AT1039/	9/03 1100	0	28,6	228	228,5*	0,41*	9,18*	10,2*	17	7,34	1,03	455
landscape											•		
						-							

535 539 543

0,44 0,48 0,49

3,36 2,88 5,75

4 4 4

13,6 9,7 9,9

23,8 19,0 19,0

0,66 0,97 0,24

310 470 117

202

0000

AT1079/40 AT1079/45P AT1079/50P

34 cm (14 in)

DEFLECTION UNITS FOR MONOCHROME DATA GRAPHIC DISPLAY TUBES

~	deflection	tube neck	line coils	soils	field coils	soils		sensitivity		page
angle		diameter	induct-	resist-	induct-	resist-	at	raster sca	raster scan current	
		шш	ance <i>u</i> H	ance	ance	ance \C	F	line A(p-p)	field A(p-p)	
1100		28,6	233*	*86,0	*08'8	10,0*	17	5,66	1,32	479
1100		28,6	205*	*35*	*05'6	10,4*	17	7,64	96'0	479
1100		28,6	225*	*68,0	9,18*	10,2*	17	2,60	1,15	447
1100		28,6 28,6	206* 107,5*	0,38* 0,18*	*09'6 8'50*	10,5* 10,4*	17	7,55 10,50	0,90	447
1100		28,6	230*	*68'0	*08'6	10,4*	20	6,27	1,39	471
1100		28,6 28,6	213* 111*	0,37* 0,18*	*05,6 9,50*	10,5* 10,4*	20 17,5	8,16 11,00	1,08	471
1100		28,6 28,6	72 105,6	0,15	12,2 5,04	13,5	17,5	13,10	0,87	431 439

* Coils can be connected in series or parallel. The indicated values apply to parallel-connected line coils, and series connected field coils.
** For flat square application.

RECOMMENDED COMBINATIONS FOR MONOCHROME DATA GRAPHIC DISPLAYS

Design designat	ion	C6E, C6E-FS	C9, C9-FS	C64, C64-FS	C64, C64-FS	C64-LITZE
Deflection angle	е	90 ₀	90 _o	110°	110 ⁰	110 ^o
Format		landscape	landscape	landscape	portrait	landscape
Tube	9-inch 12-inch 12-inch 14-inch 14-inch 15-inch 15-inch 17-inch 20-inch	M32EAA - -	 M31-340 M29EAA M32EAA M32EBL 	 M31-326 M38-328 M36ECJ M41EAA M47EAA	 M38-328 M36ECJ M41EAA M47EAA	 M41EAA M47EAA
Deflection unit	9-inch 12-inch 12-inch 14-inch 14-inch 15-inch 15-inch 17-inch 20-inch	AT1079/45P - -	- AT1079/00 AT1079/55 AT1079/40 AT1079/70 - - -	- AT1039/03 AT1039/01 AT1039/01 AT1039/09 AT1039/09	 AT1039/00 AT1039/20 AT1039/08 AT1039/08	 AT1037/01 AT1037/01
Line output tra		AT2140/16* AT2140/17*	_ AT2250/15*	_ AT2077/84**	_ AT2077/84**	_ AT2077/84 ³
Linearity contro	ol	AT4042/08A	AT4042/08A	AT4042/33A	AT4042/33A	AT4042/33A
Line driver tran	sformer	-	- " ,	AT4043/64	AT4043/64	AT4043/64
Dynamic focus	transforme	r -	AT4043/67 ^A	-		_
Shift transform Width control	er	- AT4044/20D	AT4044/20N	AT4043/29	AT4043/29	AT4043/29
		AT4044/39D	AT4044/39N	AT4044/35	AT4044/35	AT4044/35
Characters per I Supply voltage EHT (kV) Line frequency	(V) (kHz) 1	40 - 80 12 12 - 13 1) 15 - 22 2) 22 - 30	80 12 13 22 - 30 30 - 40	100 - 132 30 - 120 17 - 20 15 - 50	100 - 132 30 - 120 17 15 - 70	100 - 132 30 - 120 18 15 - 70

^{*} EHT cable, catalogue number 3122 137 63920, to be ordered separately.

^{**} EHT cable, catalogue number 3122 137 63370, to be ordered separately.

For flat square or flat application.

GENERAL

LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections

- f Heater
- k Cathode
- g Grid: Grids are distinguished by means of an additional numeral; the electrode nearest to the cathode having the lowest number.
- a Anode
- m External conductive coating m¹ Rimband or tension band (T-band)
- Fluorescent screen
- i.c. Tube pin which must not be connected externally
- n.c. Tube pin which may be connected externally

Symbols denoting voltages

Unless otherwise stated, the reference point for electrode voltages is the cathode.

- V Symbol for voltage, followed by a subscript denoting the relevant electrode/element
- Vf Heater voltage
- V_(D-D) Peak-to-peak value of a voltage
- V_D Peak value of a voltage
- VGR Grid 1 voltage for visual extinction of focused raster (grid drive service)
 VKR Cathode voltage for visual extinction of focused raster (cathode drive service)

Symbols denoting currents

- I Symbol for current followed by a subscript denoting the relevant electrode
- If Heater current (r.m.s. value)

Note: The symbols quoted represent the average value of the current, unless otherwise stated.

Symbols denoting powers

- P₀ Dissipation of the fluorescent screen
- P_q Grid dissipation

Symbols denoting capacitances

See IEC publication 100

Symbols denoting resistances and impedances

- R Symbol for resistance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.
- Z Symbol for impedance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.

Symbols denoting various quantities

- L Luminance
- f Frequency
- H Magnetic field strength

GENERAL OPERATIONAL RECOMMENDATIONS

INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets. Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.

If applications are considered which are not referred to in the data sheets of the relevant tube type extra care should be taken with circuit design to prevent the tube being overloaded due to unfavourable operating conditions.

SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.

Spread in an operating condition is a **permanent** deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.

Variation in an operating condition is non-permanent (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

LIMITING VALUES

Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems.

Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.

Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and thoughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply voltage.

If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.

In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

HEATER SUPPLY

For maximum cathode life it is recommended that the heater supply be stabilized at the nominal heater voltage, + 0%, -5%. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. Such deviations may be caused by:

- mains voltage fluctuations;
- spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
- spread in circuit adjustments;
- operational variations.

Supply from mains transformer

The maximum deviation of the heater voltage must not exceed ± 10% (Design Maximum Value).

Supply from line output transformer

A deviation from the nominal heater voltage due to spread in component characteristics and adjustments should not exceed \pm 7,5%. Considering all other possible deviations, due to mains voltage variations, beam current variations, VCR-operation, etc., the total spread in heater voltage must not exceed \pm 10%.

^{*} A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Standby (instant-on circuits)

The majority of tubes employ quick-heating cathodes and therefore an instant-on circuit is superfluous. If used, it is recommended to that the heater voltage of the tubes be reduced during standby operation to 75% of the nominal value.

Notes: If series connection of the heater circuit has to be used, and only parallel connection is quoted in the data sheet, please contact your local supplier.

Picture tubes with quick-heating cathodes should not be used in series with receiving tubes.

CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. The limiting values relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be d.c., a.c., or a combination of both. Unless otherwise stated, the maximum values quoted indicate the maximum permissible d.c. voltage. If a combination of d.c. and a.c. voltages is applied, the peak value may be twice the rated V_{kf} ; however, unless otherwise stated, this peak value shall never exceed 315 V. Unless otherwise stated, the V_{kf} max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.

In order to avoid excessive hum the a.c. component of the heater to cathode voltage should be as low as possible and never exceed 20 V r.m.s. (mains frequency). A d.c. connection should always be present between heater and cathode. Unless otherwise specified the maximum resistance should not exceed 1 M Ω ; the maximum impedance at mains frequency should be less than 100 k Ω .

INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source. When such a connection is required, it should be made via a series resistor of not less then $1~\mathrm{k}\Omega$.

CUT-OFF VOLTAGE

Curves showing the limits of the cut-off voltage as a function of grid 2 voltage are generally included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate grid 2 voltage.

The published limits are determined at an ambient illumination level of 10 lux. Because the brightness of a spot is in general greater than that of a raster of the same current, the cut-off voltage determined with the aid of a focused spot will be more negative by about 5 V as compared with that of a focused raster.

FOCUSING ELECTRODE VOLTAGE

Individual tubes will have satisfactory focus over the entire screen at some value within the published range of the focusing voltage.

Due to their flat focus characteristics, black and white picture tubes can generally be operated at a fixed focusing voltage within the published range. Monochrome data graphic display tubes should have adjustable focus.

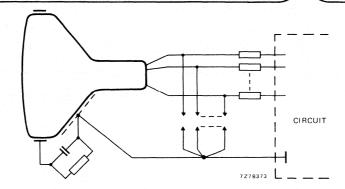
LUMINESCENT SCREEN

To prevent permanent screen damage, care should be taken:

- not to operate the tube with a stationary picture at high beam currents for extended periods;
- not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents;
- if no e.h.t. bleeder is used, to choose the time constants of the cathode, grid 1, grid 2, and deflection circuits, such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.


The coating is not a perfect conductor and in order to reduce electromagnetic radiation caused by the line time base and the picture content it may be necessary to make multiple connections to the coating. See also 'Flashover'.

METAL RIMBAND

An appreciable capacitance exists between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shock, a d.c. connection should be provided between the metal band and the external conductive coating. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if access is made to the metal band. To reduce the shock to the safe limit, it is suggested that a $2~M\Omega$ resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flashover high voltages will be induced on the metal band. It is therefore recommended that the $2~M\Omega$ resistor be bypassed by a 4,7 nF capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating, and the anode voltage. The 4,7 nF capacitor also serves to improve e.h.t. smoothing by adding the rimband capacitance to the capacitance of the outer conductive coating.

FLASHOVER

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. Although the utmost precautions are taken in the design and manufacture of the tubes, there is always a chance that flashover will occur. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged. Therefore it is of vital importance to provide protective circuits with spark gaps and series resistors, which should be connected according to Fig. 1. No other connections between the outer conductive coating and the chassis are permissible.

IMPLOSION PROTECTION

Fig. 1.

All picture tubes employ integral implosion protection and must be replaced with a tube of the same type number or recommended replacement to assure continued safety.

HANDLING

Although all picture tubes are provided with integral implosion protection, which meets the intrinsic protection requirements stipulated in the relevant part of IEC 65, care should be taken not to scratch or knock any part of the tube. Stress on the tube neck must be avoided.

When lifting a tube from the edge-down position, one hand should be placed around the parabola section of the cone and the other hand should be placed under the rim band (Fig. 2).

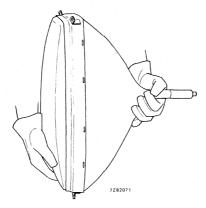
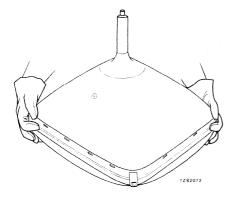



Fig. 2 Lifting picture tube from edge-down position.

When placing a tube face downwards ensure that the screen rests on a soft pad of suitable material, kept free from abrasive substances. When lifting from the face-down position the hand should be placed under the areas of the faceplate close to the mounting lugs at diagonally opposite corners of the faceplate (Fig. 3).

When lifting from the face-up position the hands should be placed under the areas of the cone close to the mounting lugs at diagonally opposite corners of the cone (Fig. 4).

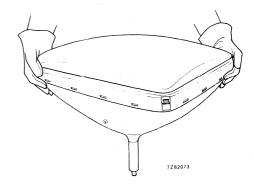


Fig. 3 Lifting picture tube from face-down position.

Fig. 4 Lifting tube from face-up position.

In all handling procedures prior to insertion in the receiver cabinet there is a risk of personal injury as a result of severe accidental damage to the tube. It is therefore recommended that protective clothing should be worn, particularly eye shielding.

If suspending the tube from the mounting lugs ensure that a minimum of 2 are used; UNDER NO CIRCUMSTANCES HANG THE TUBE FROM ONE LUG.

Remember when replacing or servicing the picture tube that a residual electrical charge may be carried by the anode contact and also the external coating if not earthed. Before removing the tube from the equipment, earth the external coating and short the anode contact to the coating.

PACKING

The packing provides protection against tube damage under normal conditions of shipment or handling. Observe any instructions given on the packing and handle accordingly. The tube should under no circumstances be subjected to accelerations greater than 35g.

MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting.

The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The mass of the socket and additional circuitry should not be more than 150 g. The socket of tubes with a 7-pin miniature base may not be used for mounting components.

It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.

DIMENSIONS

In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed around dimensions taken from individual tubes.

REFERENCE LINE

Where a reference line is indicated on the tube outline drawing, it is determined by means of a gauge. Drawings of the gauges are given in this section under "Reference line gauges"

GENERAL DATA ON MONOCHROME DISPLAY TUBES

Glass transmission

Two types of screen glass are available:

- normal tinted glass,
- dark tinted glass, for improved contrast.

The light transmission at the screen centre of both types is shown in the table below.

tube	normal tinted glass	dark tinted glass
24 cm (9 in), 90 ^o	approx. 53%	approx. 42%
29 cm (12 in), 90 ⁰ *	approx. 43%	approx. 30%
31 cm (12 in), 90°; 3 x 4	approx. 46%	approx. 34%
31 cm (12 in), 90°; 4 x 5	approx. 50%	approx. 34%
31 cm (12 in), 110 ⁰	approx. 46%	approx. 34%
34 cm (14 in), 90 ^o	approx. 48%	approx. 34%
34 cm (14 in), 90 ^{0**}	approx. 42%	approx. 30%
38 cm (15 in), 110 ^o	approx. 46%	approx. 34%
38 cm (15 in), 110 ⁰ *		approx. 34%
41 cm (17 in), 114 ⁰	approx. 48%	<u> </u>
47 cm (20 in), 114 ^o	approx. 46%	approx. 32%

Screen surface treatments

Two types of anti-glare treatments are available:

- direct grind, i.e. the screen is ground to an ultrafine finish that minimizes reflection without blurring the image or decreasing resolution,
- direct etch, i.e. the screen is etched to a finish that diffuses specular reflection.

- * Flat square high resolution monochrome display tube.
- ** Flat high resolution monochrome display tube.

Survey of screen phosphors

designation fluorescent phosphorescent persistence* colour co-ordinates relative brig P4 white white white with respec P40 white yellowish-green medium short 0,265 0,300 approx. 15 P31 green medium short 0,265 0,306 approx. 15 P32 yellowish-green yellowish-green long 0,205 0,715 approx. 17 - yellow-green yellow-green yellow-green yellow-green medium 0,220 0,660 approx. 17 - yellow-green yellow-green medium 0,220 0,660 approx. 17 - yellow-green yellow-green medium 0,205 0,715 approx. 17 - orange orange medium 0,557 0,446 approx. 6 - white white medium 0,557 0,446 approx. 6 - white medium 0,557 0,446 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
white medium short 0,265 0,295 yellowish-green medium 0,265 0,300 green medium short 0,265 0,565 iish-green yellowish-green medium 0,205 0,715 iish-green yellowish-green medium 0,205 0,715 iish-green yellowish-green medium 0,205 0,715 -green yellow-green medium-short 0,425 0,550 -green yellow-green medium 0,554 0,446 orange medium 0,557 0,446 white medium short 0,355 0,395 white medium short 0,315 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395 white medium short 0,285 0,395	u .	fluorescent colour	phosphorescent colour	persistence*	colour co-	ordinates	relative brightness (%) with respect to type WW	ess (%) type WW
yellowish-green medium short 0,250 0,300 green medium short 0,265 0,565 yellowish-green medium 0,205 0,715 ish-green yellowish-green medium 0,238 0,568 ish-green yellowish-green medium 0,220 0,660 -green yellow-green medium 0,225 0,715 -green yellow-green medium 0,425 0,550 orange medium 0,554 0,446 white medium short 0,557 0,446 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395 white medium short 0,285 0,395 white medium short 0,285 0,395		white	white	medium short	0,265	0,295	100	
green medium short 0,265 0,565 vish-green yellowish-green long 0,205 0,715 vish-green yellowish-green medium 0,238 0,568 rish-green yellow-green medium 0,220 0,660 rgreen yellow-green medium-short 0,205 0,715 g orange medium 0,425 0,550 g orange medium 0,557 0,446 g orange medium 0,557 0,446 g orange medium 0,355 0,395 white medium short 0,315 0,395 white medium short 0,285 0,395 white medium short 0,285 0,395		white	yellowish-green	medium	0,250	0,300	approx. 80	
vish-green yellowish-green long 0,205 0,715 vish-green yellowish-green medium 0,238 0,568 rish-green yellow-green long 0,220 0,660 r-green yellow-green medium-short 0,425 0,715 g-green yellow-green medium-short 0,425 0,550 g-green medium 0,554 0,446 g-green medium 0,557 0,446 g-green medium 0,557 0,446 g-green medium 0,355 0,395 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,355 0,395		green	green	medium short	0,265	0,565	approx. 150	
vish-green wellowish-green medium 0,238 0,568 rish-green yellowish-green medium 0,220 0,660 r-green yellow-green long 0,205 0,715 r-green yellow-green medium-short 0,425 0,550 orange medium 0,554 0,446 white medium 0,557 0,446 white medium 0,355 0,395 white medium short 0,315 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395		yellowish-green	yellowish-green	long	0,205	0,715	approx. 75	
vish-green wellowish-green medium 0,220 0,660 -green yellow-green long 0,205 0,715 -green yellow-green medium-short 0,425 0,550 e orange medium 0,554 0,446 e orange medium 0,557 0,446 e orange medium 0,355 0,395 white medium short 0,315 0,355 white medium short 0,355 0,395 white medium short 0,285 0,395		yellowish-green	yellowish-green	medium	0,238	0,568	approx. 120	
-green yellow-green long 0,205 0,715 -green yellow-green medium-short 0,425 0,550 orange medium short 0,554 0,446 white medium short 0,557 0,442 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395 white medium short 0,285 0,395		yellowish-green	yellowish-green	medium	0,220	099'0	approx. 85	
yellow-green medium-short 0,425 0,550 e orange medium short 0,554 0,446 e orange medium short 0,557 0,442 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395 white medium short 0,285 0,395		yellow-green	yellow-green	long	0,205	0,715	approx. 75	
orange medium short 0,554 0,446 orange medium short 0,547 0,446 orange medium (0,557 0,442 white medium short 0,315 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395		yellow-green	yellow-green	medium-short	0,425	0,550	approx. 170	
orange medium short 0,547 0,446 white medium short 0,557 0,442 white medium short 0,355 0,395 white medium short 0,355 0,395 white medium short 0,285 0,395		orange	orange	medium	0,554	0,446	approx. 60	*
e orange medium 0,557 0,442 white medium short 0,355 0,395 white medium short 0,315 0,355 white medium short 0,285 0,395 white medium short 0,285 0,320		orange	orange	medium short	0,547	0,446	approx. 85	
white medium short 0,355 0,395 white medium short 0,315 0,355 white medium short 0,285 0,395		orange	orange	medium	0,557	0,442	approx. 60	
white medium short 0,315 0,355 white medium short 0,355 0,395 white medium short 0,285 0,320		white	white	medium	0,355	0,395	approx. 65	
white medium short 0,355 0,395 white medium short 0,285 0,320		white	white	medium short	0,315	0,355	approx. 120	**
white medium short 0,285 0,320		white	white	medium short	0,355	0,395	approx. 130	\
		white	white	medium short	0,285	0,320	approx. 110	. *

* medium short: 10 to 100 μs medium: 1 to 100 ms long: 100 ms to 1 s.

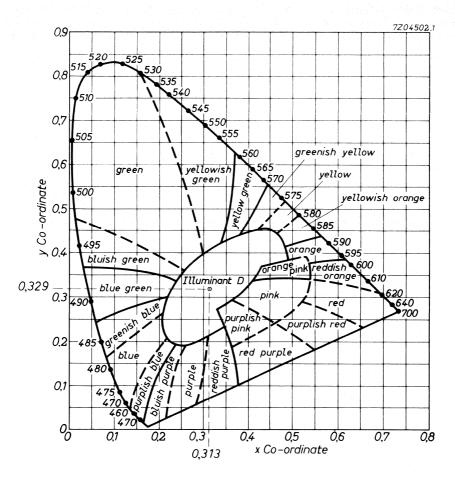


Fig. 1 Kelly chart.

23

Resolution characteristics

The following graphs (Figs 2 to 7) represent the line width as a function of the cathode cut-off voltage at constant anode current (shrinking raster method), at screen centre for different display tubes.

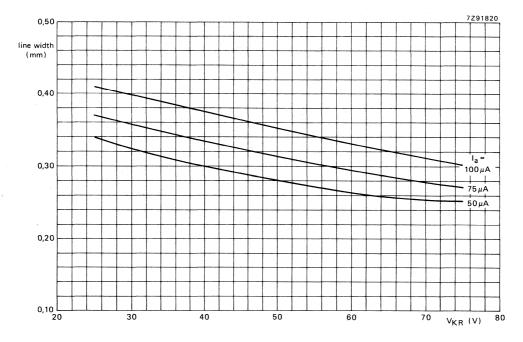


Fig. 2 Tubes M24-511W, M24-512W, M24-514W; $V_a = 12 \text{ kV}$; raster dimensions 168 mm x 126 mm; 292 active lines at 50 Hz repetition frequency.

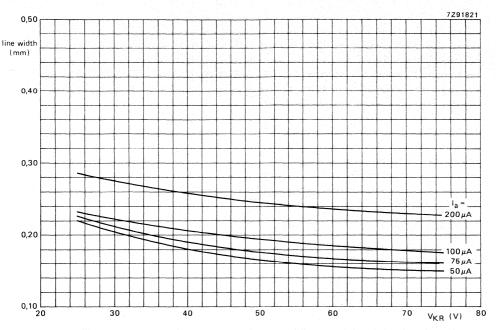


Fig. 3 Tubes M24-306, M24-308, M24-310, M24-328; $V_a = 12 \text{ kV}$; raster dimensions 168 mm x 126 mm; 292 active lines at 50 Hz repetition frequency.

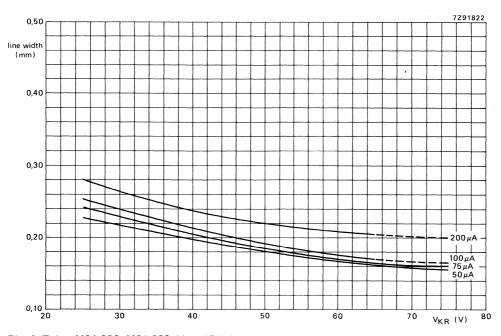


Fig. 4 Tubes M31-326, M31-328; V_a = 17 kV; raster dimensions 216 mm x 162 mm; 292 active lines at 50 Hz repetition frequency.

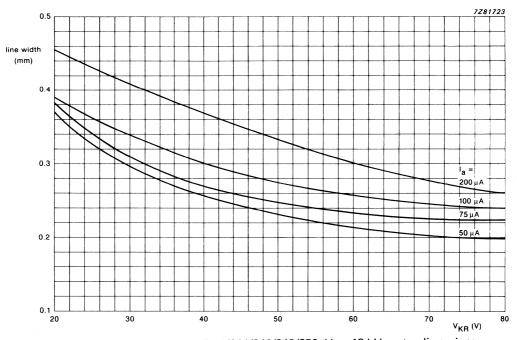


Fig. 5 Tubes M31-336/338/340/342/344/346/348/350; V_a = 12 kV; raster dimensions 216 mm x 162 mm; 292 active lines at 50 Hz repetition frequency.

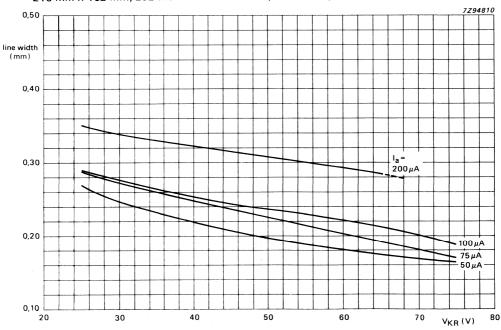


Fig. 6 Tubes M32EAA; $V_a = 14 \, kV$; raster dimensions 237 mm x 178 mm; 292 active lines at 50 Hz repetition frequency.

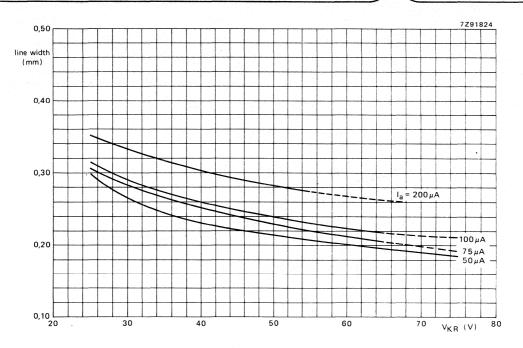


Fig. 7 Tubes M38-320/330/340 series; $V_a = 17 \text{ kV}$; raster dimensions 259 mm x 194 mm; 292 active lines at 50 Hz repetition frequency.

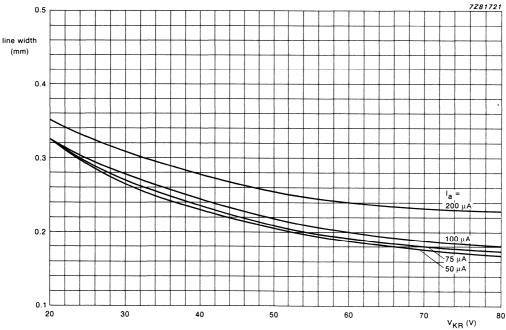


Fig. 8 Tubes M36ECJ; $V_a = 17 \text{ kV}$; raster dimensions 267 mm x 200 mm; 292 active lines at 50 Hz repetition frequency.

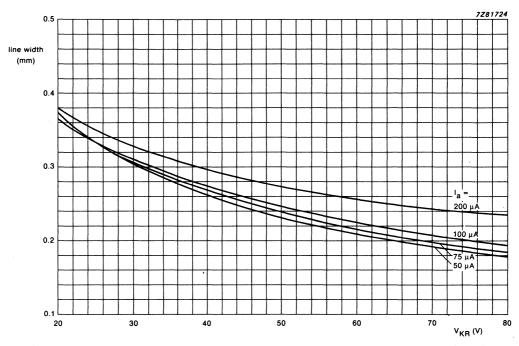


Fig. 9 Tubes M41EAA; $V_a = 20 \text{ kV}$; raster dimensions 304 mm x 228 mm; 292 active lines at 50 Hz repetition frequency.

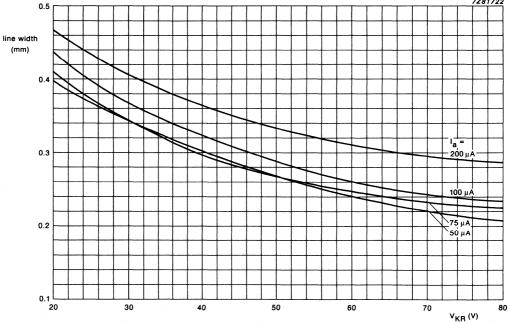
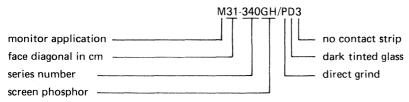


Fig. 10 Tubes M47EAA; V_a = 20 kV; raster dimensions 348 mm x 261 mm; 292 active lines at 50 Hz repetition frequency.

TYPE DESIGNATION

Screen glass, screen surface treatment and phosphor are identified by the complete type designation. In the **old system**, used for type numbers M24-306, M31-340, etc., surface treatment and type of screen glass are identified by a type number suffix, as shown in the table below.

Table 1 Type number suffix


surface treatment	screen glass	suffix
normal glare	normal tinted	no
direct grind	normal tinted	/P
direct etch	normal tinted	/E
direct grind	dark tinted	/PD
direct etch	dark tinted	/ED

For tubes without contact strip between external coating and mounting hardware the suffix is:/. . 3. For tubes with an internal surge limiter the suffix is:/ . . 4.

For tubes with the new generation mark 2 gun the suffix is:/..6.

For tubes with a ring trap base the suffix is:/..7.

Example:

In the **new system**, used for type numbers M29EAA, M32EAA, etc., surface treatment and type of screen glass are identified as shown in the example below.

Example:

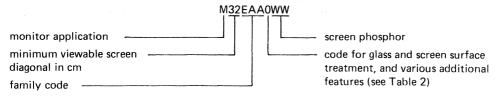


Table 2 Codes for glass and screen surface treatments, and various additional features.

GLASS			ANTI-GLARE		ADDITIONAL				
code	normal tinted	dark tinted	normal glare	direct grind	direct etch	no contact strip	ISL	new generation gun	without anti- crackling coating
0 1 2 3	X	X X	X	××	x				
5 6 7 8	X X X	×	×	X	×	X	×		
10 11 12 13	X	×	x	X	x			X X X	
15 16 17 18	X X X	x	X	X	x	X	x	X X X	
20 21	х	х	x	Х			X		х

RESOLUTION CHARACTERISTICS FOR THE NEW GENERATION MARK 2 GUN

The following graphs (Figs 1 to 5) represent the line width as a function of the cathode cut-off voltage at a constant anode current (shrinking raster method), at screen centre for different display tubes with the mark 2 gun.

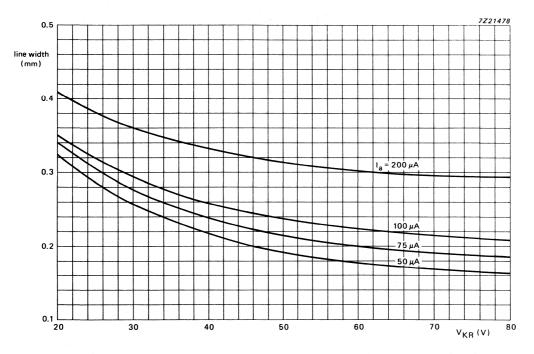


Fig. 1 Mark 2 tubes; 12 inch; 90° deflection angle; $V_a = 12 \text{ kV}$; raster dimensions 216 mm x 162 mm; 292 active lines at 50 Hz repetition frequency.

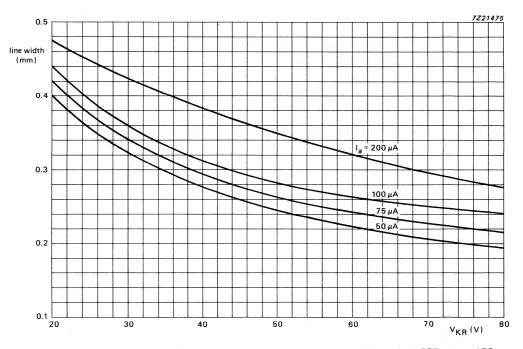


Fig. 2 Mark 2 tubes; 14 inch; 90° deflection angle; $V_a = 14 \text{ kV}$; raster dimensions 237 mm x 178 mm; 292 active lines at 50 Hz repetition frequency.

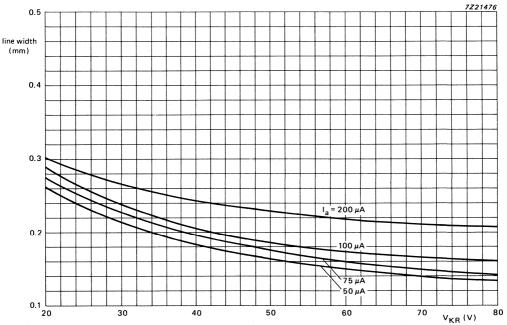


Fig. 3 Mark 2 tubes; 15 inch; 110° deflection angle; $V_a = 17 \text{ kV}$; raster dimensions 259 mm x 194 mm; 292 active lines at 50 Hz repetition frequency.

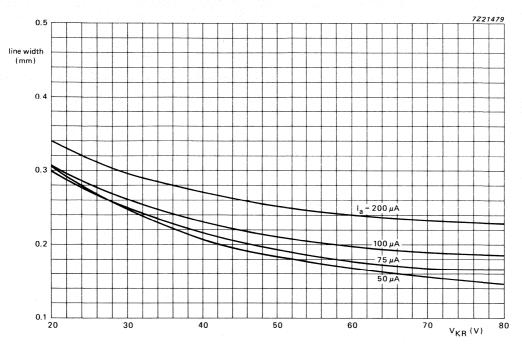


Fig. 4 Mark 2 tubes; 15 inch FLAT SQUARE; 110° deflection angle; $V_a = 17 \text{ kV}$; raster dimensions 267 mm x 200 mm; 292 active lines at 50 Hz repetition frequency.

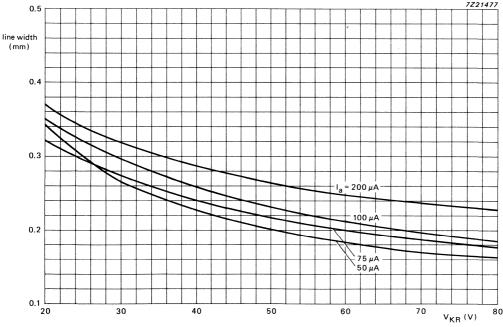


Fig. 5 Mark 2 tubes; 17 inch; 110° deflection angle; $V_a = 20 \text{ kV}$; raster dimensions 304 mm x 228 mm; 292 active lines at 50 Hz repetition frequency.

NEW GENERATION MARK 2 GUN

- For high resolution monochrome display tubes
- 900 deflection angle
- 24 cm (9 in), 31 cm (12 in), and 34 cm (14 in) tubes
- 20 mm neck diameter
- Optimised resolution for V_{q2} at 550 V

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	24 cm (9 in), 31 cm (12 in) and 34 cm (14 in)
Neck diameter	20 mm
Heating	12 V/130 mA
Grid 2 voltage	550 V
Anode voltage 9 and 12 inch 14 inch	12 kV 14 kV
Resolution	approx. 1400 lines

For the various phosphors, glass transmission, anti-reflective treatments, reinforcement systems and mechanical tube details relating to the above mentioned tubes, see the relevant section of this book.

GENERAL

ELECTRICAL DATA

Focusing method	electrostat	ic	
Deflection method	magnetic		
Direct interelectrode capacitances cathode to all other electrodes	max.	4	pF
grid 1 to all other electrodes	max.	8	рF
Heater voltage		12	٧
Heater current at 12 V		130	mΑ

RATINGS (absolute maximum system)

Unless otherwise specified, voltage values are positive and measured with respect to Grid 1.

Anode voltage		15 kV
9 inch tube	max.	
	min.	9.5 kV
12 inch tube	max.	15 kV
12 mon tabe	min.	10 kV
14 inch tube	max.	16 kV
14 mon tube	min.	10 kV
Grid 4 (focusing electrode) voltage	-200 to+10	00 V
Grid 2 voltage	max. 7	'00 V
Grid 2 Voltage	min. 4	00 V
Anode current		
long term average value	max.	75 μΑ
peak value	max. 3	800 μΑ
Cathode voltage, positive peak value	max. 4	00 V
Heater voltage		12 V _{-10%} *
Cathode to heater voltage	max. 1	50 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 $V_{-5\%}^{+0\%}$.

CIRCUIT DESIGN VALUES		
Grid 4 current		
positive	max. 25	μΑ
negative	max. 25	μΑ
Grid 2 current		
positive		μΑ
negative		μΑ
I-rest	5	μA see note 1
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max. 1.0	Ω M
Impedance between cathode and heater	max. 0.1	Ω M
Grid 1 circuit resistance	max. 1.5	Ω M
Grid circuit impedance	max. 0.5	$M\Omega$
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage		
9 and 12 inch types	12	kV
14 inch types	14	kV
Grid 4 (focusing electrode) voltage	0 to 300	V see note 2
Grid 2 voltage	550	V
Cathode cut-off voltage	69 to 105	V see note 3
Grid drive; voltages specified with respect to cathode		
Anode voltage		
9 and 12 inch types	12	kV
14 inch types	14	kV
Grid 4 (focusing electrode) voltage	0 to 300	V see note 2
Grid 2 voltage	550	V
Grid 1 cut-off voltage	77 to 127	V see note 3

RESOLUTION

The resolution is approx. 1400 lines. It is measured at the screen centre:

- with shrinking raster method
- at light output = 68.5 cd/m² (20 footlambert), and raster dimensions of 168 mm x 126 mm (9 inch tube), 216 mm x 162 mm (12 inch tube) and 237 mm x 178 mm (14 inch tube)
- at V_{q2} = 700 V, and anode voltage (9 and 12 inch types) = 12 kV, (14 inch types) = 14 kV
- with phosphor type W (WW)
- with normal tinted face glass, without anti-glare treatment of screen surface

GENERAL

NOTES

- 1. Anode current measured at 12 kV (9 and 12 inch types) or 14 kV (14 inch types), 12 V heater voltage with g1, g2 and g4 interconnected to cathode.
- 2. Measured at screen centre on spot at anode current of 250 μ A (peak), anode voltage of 12 kV for 9 and 12 inch types, 14 kV for 14 inch types and a grid 2 voltage of 550 V. Dynamic focus (only for optimization): typical correction for a video field of:

 $H \times V = 168 \text{ mm} \times 126 \text{ mm} (9 \text{ inch tube})$

 $H \times V = 216 \text{ mm} \times 162 \text{ mm}$ (12 inch tube) line parabola 100 V, field parabola 100 V

 $H \times V = 237 \text{ mm} \times 178 \text{ mm} (14 \text{ inch tube})$

3. Visual extinction of focused raster.

For anode current as a function of grid 1 voltage and as a function of cathode voltage, see figures 1 and 2.

For limits of cut-off voltage as a function of grid 2 voltage, see figures 3 and 4.

- For high resolution monochrome display tubes
- 1100 deflection angle
- 31 cm (12 in), 38 cm (15 in), 44 cm (17 in) and 50 cm (20 in) tubes
- 28.6 mm neck diameter
- $\bullet\,$ Optimised resolution for V $_{g2}$ at 550 V

QUICK REFERENCE DATA

Deflection angle		110 ⁰
Face diagonal		31 cm (12 in), 38 cm (15 in), 44 cm (17 in), 50 cm (20 in)
Neck diameter		28.6 mm
Heating		6.3 V/240 mA
Grid 2 voltage		550 V
Anode voltage 12 and 15 inch 17 and 20 inch		17 kV 20 kV
Resolution 12, 15 an 20 inch types	d 17 inch types	approx. 1600 lines approx. 1500 lines

For the various phosphors, glass transmission, anti-reflective treatments, reinforcement systems and mechanical tube details relating to the above mentioned tubes, see the relevant section of this book.

ELECTRICAL DATA

long term average value

Cathode voltage, positive peak value

peak value

Heater voltage

Focusing method	electrostati	С	
Deflection method	magnetic		
Direct interelectrode capacitances cathode to all other electrodes	max.	4	pF
grid 1 to all other electrodes	max.	8	pF
Heater voltage		6.3	V
Heater current at 6.3 V		240	mA
RATINGS (absolute maximum system)			
Unless otherwise specified, voltage values are positive and measured with re	espect to Gr	d 1.	
Anode voltage 12 and 15 inch tube	max. min.		kV kV
17 inch tube	max. min.		kV kV
20 inch tube	max. min.		kV kV
Grid 4 (focusing electrode) voltage	-200 to +	1000	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Grid 2 voltage	max. min.	700 400	
Anode current			

75 μA

300 μΑ

400 V

max.

max.

max.

^{6.3} V^{+5%}_{-10%}* Cathode to heater voltage max. 150 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 6.3 $V_{-5\%}^{+0\%}$.

CIRCUIT DESIGN VALUES		
Grid 4 current	max. 25 μA	
negative	max. 25 μA	
Grid 2 current positive	max. 5 μA	
negative	max. 5 μA	
I-rest	5 μΑ	see note 1
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max. $1.0~\text{M}\Omega$	
Impedance between cathode and heater	max. $0.1~M\Omega$	
Grid 1 circuit resistance	max. 1.5 $M\Omega$	
Grid circuit impedance	max. $0.5~M\Omega$	
TYPICAL OFERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage 12 and 15 inch types	17 kV	
17 and 20 inch types	20 kV	
Grid 4 (focusing electrode) voltage	0 to 300 V	see note 2
Grid 2 voltage	550 V	
Cathode cut-off voltage	69 to 105 V	see note 3
Grid drive; voltages specified with respect to cathode		
Anode voltage		
12 and 15 inch types	17 kV	
17 and 20 inch types	20 kV	
Grid 4 (focusing electrode) voltage	0 to 300 V	see note 2
Grid 2 voltage	550 V	
Grid 1 cut-off voltage	77 to 125 V	see note 3

RESOLUTION

The resolution is approx. 1600 and 1500 lines respectively. It is measured at the screen centre:

- with shrinking raster method
- at light output = 68.5 cd/m² (20 footlambert), normal tinted face glass and raster dimensions of 216 mm x 162 mm (12 inch tube), 259 mm x 194 mm (15 inch tube)
 304 mm x 228 mm (17 inch tube), 348 mm x 261 mm (20 inch tube) and dark tinted face glass and raster dimensions of 267 mm x 200 mm (15 inch FS tube)
- \bullet at V_{g2} = 700 V, and anode voltage of 17 kV for 12 and 15 inch types, and 20 kV for 17 and 20 inch types
- with phosphor type W (WW)
- without anti-glare treatment of screen surface

GENERAL

NOTES

- 1. Anode current measured at 17 kV (12 and 15 inch types) or 20 kV (17 and 20 inch types), 6.3 V heater voltage with g1, g2 and g4 interconnected to cathode.
- Measured at screen centre on spot at anode current of 250 μA (peak), anode voltage of 17 kV for 12 and 15 inch types, 20 kV for 17 and 20 inch types, and a grid 2 voltage of 550 V.
 Dynamic focus (only for optimization): typical corrections are listed in the table below:

Table 1 Dynamic focus

tube type	raster scan (mm)	format	line parabola (V)	field parabola (V)
12 inch	216 × 162	_	275	100
15 inch	259 x 194	landscape	275	100
15 inch	194 × 259	portrait	125	225
15 inch FS	267 x 200	landscape	300	100
15 inch FS	200 × 267	portrait	125	250
17 inch	304 x 228	_	275	100
20 inch	348 x 261	_	275	100

^{3.} Visual extinction of focused raster.

For anode current as a function of grid 1 voltage and as a function of cathode voltage, see figures 1 and 2.

For limits of cut-off voltage as a function of grid 2 voltage, see figures 3 and 4.

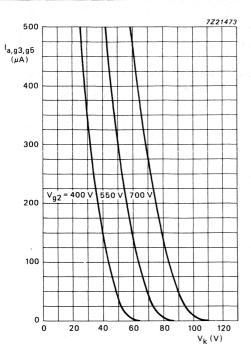


Fig. 1 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = (n) kV^*$.

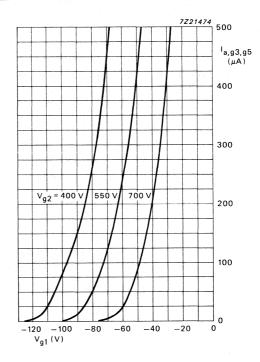


Fig. 2 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = (n) kV^*$.

* (n) = 12 kV for 9 and 12 inch types 14 kV for 14 inch types 17 kV for 12 and 15 inch (1100) types 20 kV for 17 and 20 inch types

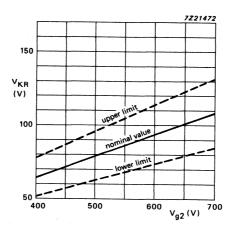
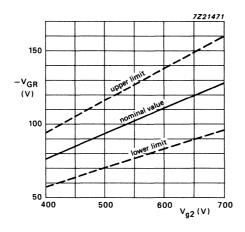
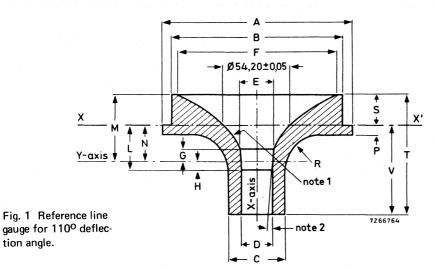


Fig. 3 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = (n) kV^*$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$




Fig. 4 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = (n) kV^*$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$

* (n) = 12 kV for 9 and 12 inch types 14 kV for 14 inch types 17 kV for 12 and 15 inch (110°) types 20 kV for 17 and 20 inch types

REFERENCE LINE GAUGES

REFERENCE LINE GAUGE C (JEDEC 126) (IEC 67-IV-3)

The millimetre dimensions are derived from the original inch dimensions.

							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		inches			millimetres		
ref.	min.	nom.	max.	min.	nom.	max.	notes
Α		5,000	- ,,,,,,	_	127,00	_	_ '
В	_	4,500	- 1	i	114,30	· _ · .	- , * ,
C		2,000	_	_	50,80	-	
D	1,168	1,168	1,171	29,668	29,668	29,743	
E	1,241	1,242	1,243	31,522	31,547	31,572	· .
F	4,248	4,250	4,252	107,900	107,950	108,000	-
G	-	0,279	_		7,09	_	2
H		0,250	_	_	6,35		
L	1,165	1,170	1,175	29,60	29,72	29,84	2
M	_	1,634	_	<u> </u>	41,50	- <u>-</u>	-
N		0,920	_		23,37	_	1
Р		0,250	_		6,35	_	· —
R		1,000r	_	_	25,40r	_	·
S	0,712	0,714	0,716	18,085	18,136	18,186	_
T	_	3,214		_	81,64	_	
V	2,490	2,500	2,510	63,25	63,50	63,75	_

tion angle.

^{1.} $y = 0.58 x^2 + 0.576$ inches (0,0228 $x^2 + 14,630$ mm) 'y' values must be held to $\pm 0,002''$ (0,05 mm). The Y-axis is 0,920" (23,368 mm) below the X-X' reference plane.

^{2. 40 ± 30&#}x27; taper between planes G and L.

REFERENCE LINE GAUGE D (EIA G-197)

Dimensions in mm

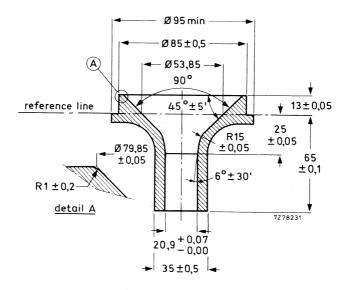


Fig. 2 Reference line gauge for 90° deflection angle.

REFERENCE LINE GAUGE G (JEDEC G148)

Dimensions in mm

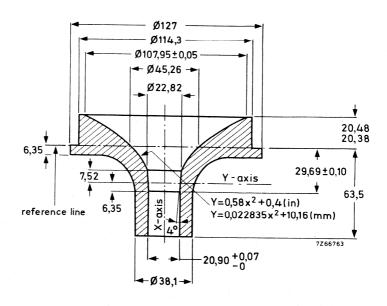


Fig. 3 Reference line gauge for 1100 deflection angle.

BASES

SMALL-BUTTON NEO EIGHTAR BASE IEC 67-1-31 JEDEC B7-208 Dimensions in mm

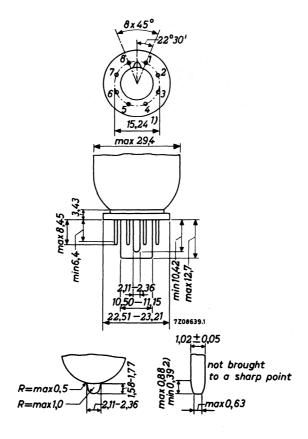
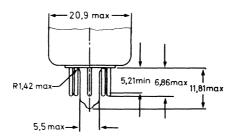


Fig. 1.


Notes

- 1. Base-pin positions are held to tolerances such that the base will fit a flat-plate gauge having a thickness of 9,53 and eight equally spaced holes of 1,40 ± 0,01 diameter located on a 15,24 ± 0,01 diameter circle. The gauge is also provided with a centre hole to provide 0,25 diametric clearance for the lug and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, pass into and disengage from the gauge.
- 2. This dimension may vary within the limits shown around the periphery of any individual pin.

7-PIN MINIATURE BASE WITH PUMPING STEM

Dimensions in mm

Dimensions of this base are within the JEDEC E7-91 dimensions

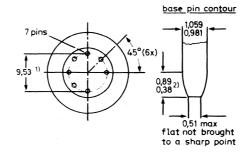
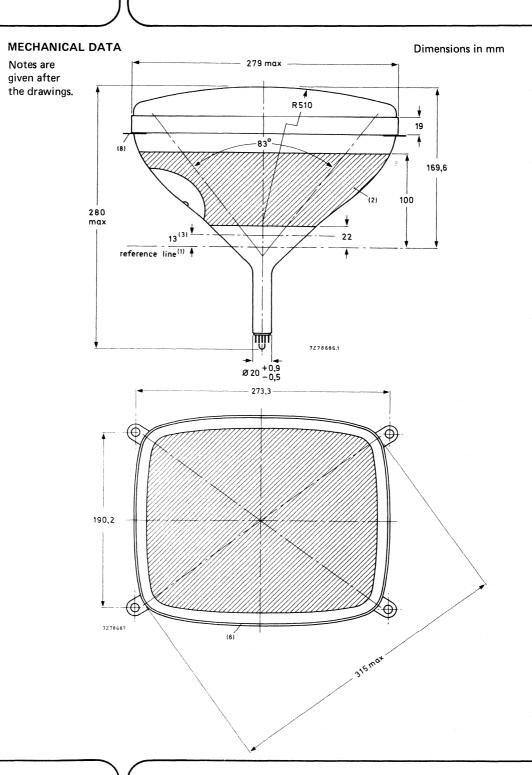


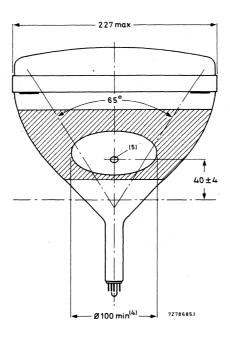
Fig. 2.

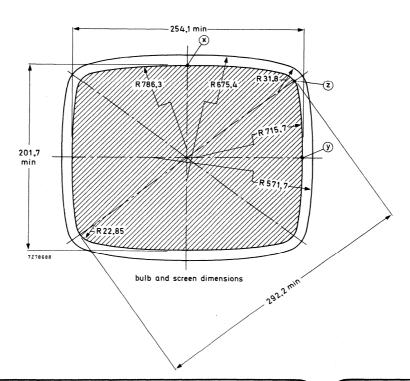
Notes

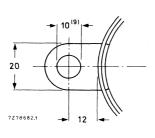
- 1. Base-pin and pumping stem positions are held to tolerances such that entire length of pins and stem will without undue force pass into and disengage from a flat-plate gauge having a thickness of 6,35 mm and eight holes with diameters of 1,27 ± 0,013 mm so located on a 9,525 ± 0,013 mm diameter circle that the distance along the chord between any two adjacent hole centres is 3,645 ± 0,013 mm and a centre hole of 5,97 + 0,025 mm being chamfered at the top over 1,52 mm with an angle of 45 degrees.
- 2. This dimension around the periphery of any individual pin may vary within the limits shown.

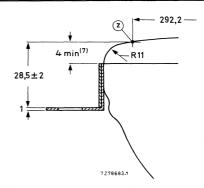
TV PICTURE TUBE

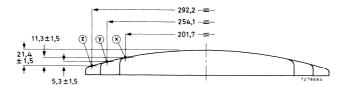

31 cm (12 in), 90° , rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.

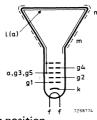

QUICK REFERENCE DATA

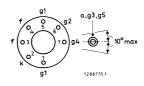

Face diagonal	31 cm (12 in)				
Deflection angle	900				
Overall length		max. 280 mm			
Neck diameter		20 mm			
Heating		11 V, 140 mA			
Grid 2 voltage		130 V			
Final accelerator voltage		12 kV			
Quick heating cathode	with a typical tube a legible picture will appear within 5				
SCREEN					
Metal-backed phosphor		P4			
Luminescence		white			
Light transmission of face glass		50 %			
Useful diagonal		min. 292,2 mm			
Useful width		min. 254,1 mm			
Useful height		min. 201,7 mm			
HEATING					
Indirect by a.c. or d.c.; parallel supply					
Heater voltage	V_{f}	11 V			
Heater current	۱ _f	140 mA			
Limits (Absolute max. rating system) of r.m.s. heater voltage, measured in any 20 ms	V _f	max. 12,7 V _* min. 9,3 V			


For heating time as a function of source impedance see last page of this data sheet.


^{*} This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.







Mounting position

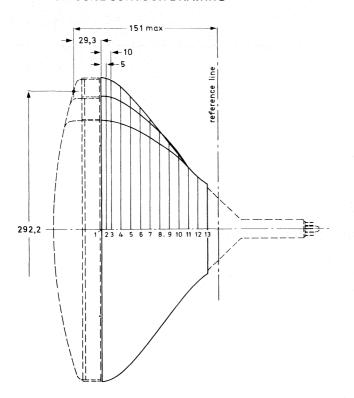
Net mass

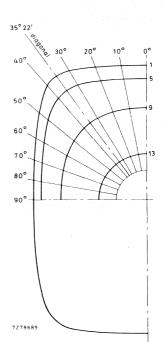
approx. 2,9 kg

any

Base designation

JEDEC E7-91


The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.


Notes to outline drawings

- 1. The reference line is determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone (gauge D).
- The configuration of the external conductive coating may be different but contains the contact area shown in the drawing. The external conductive coating must be earthed.
- 3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge D.
- 4. This area must be kept clean.
- 5. Recessed cavity contact IEC 67-III-2; JEDEC J1-21.
- 6. The metal band must be earthed.
- 7. Distance from reference point Z to any hardware.
- 8. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 9. The mounting screws in the cabinet must be situated inside a circle of 7 mm drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

MAXIMUM CONE CONTOUR DRAWING

Dimensions in mm

Sec-	Nom. distance		Distance from centre (max. values)									
tion	from section 1	00	10º	20°	30°	diag.	400	50°	60°	70°	80o	90°
13	105,9	48,4	48,4	48,4	48,4	48,4	48,4	48,4	48,4	48,4	48,4	48,4
12	99	55,3	55,3	55,3	55,3	55,3	55,3	55,3	55,3	55,3	55,3	55,3
11	90	66,1	66,0	65,8	65,6	65,4	65,4	65,3	65,3	65,3	65,4	65,4
10	80	79,7	79,5	79,0	78,4	78,1	77,8	77,3	76,9	76,6	76,5	76,4
9	70	91,8	92,0	92,1	91,8	91,4	90,9	89,6	87,9	86,2	84,9	84,3
.8	60	102,3	103,0	104,2	104,8	104,5	103,9	101,4	97,8	94,4	91,8	90,9
7	50	111,8	112,8	115,1	117,1	117,2	116,5	112,3	106,5	101,3	98,0	96,9
6	40	120,4	121,6	124,9	128,6	129,3	128,5	122,1	113,7	107,3	103,5	102,3
5	30	128,2	129,6	133,7	139,1	140,6	139,6	130,3	119,9	112,6	108,4	107,1
4	20	135,0	136,5	141,3	148,3	150,8	149,4	136,9	125,0	117,1	112,6	111,1
3	10	140,0	141,7	146,8	154,9	158,1	156,3	141,5	128,7	120,3	115,6	114,1
2	5	140,9	142,6	147,9	156,0	159,2	157,3	142,4	129,6	121,1	116,4	114,9
1	0	141,3	143,0	148,3	156,5	159,6	157,6	142,7	129,9	121,5	116,8	115,3

CAPACITANCES

Final accelerator to external conductive coating	$C_{a, g3, g5/m}$ $\stackrel{<900\ pF}{>450\ pF}$
Final accelerator to metal band	$C_{a, g3, g5/m'}$ 150 pF
Cathode to all	C _k 3 pF
Gird 1 to all	C _{g1} 7 pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 90°

Horizontal deflection angle 83° Vertical deflection angle 65°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 55 mm.

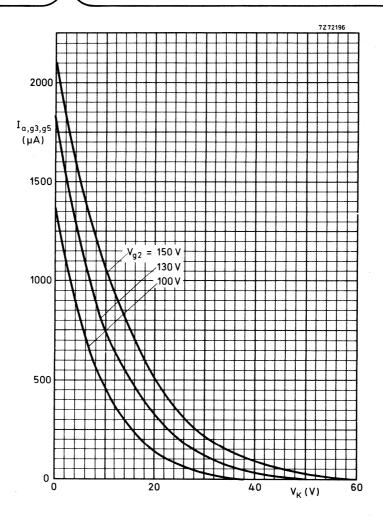
TYPICAL OPERATING CONDITIONS

Cathode drive service

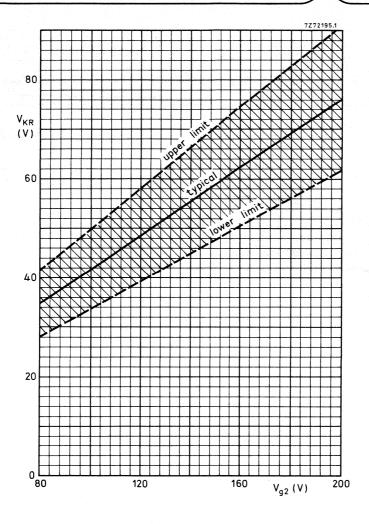
Voltages are specified with respect to grid 1

Final accelerator voltage $V_{a,\,g3,\,g5} \qquad 12 \ kV$ Focusing electrode voltage $V_{g4} \qquad 0 \ to \ 130 \ V^*$ Grid 2 voltage $V_{g2} \qquad 130 \ V$ Cathode voltage for visual extinction of focused raster $V_{KR} \qquad 45 \ to \ 65 \ V$

^{*} Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and + 130 V (e.g. two taps: 0 V and 130 V). The optimum focusing voltage of individual tubes may be between -150 and + 150 V.

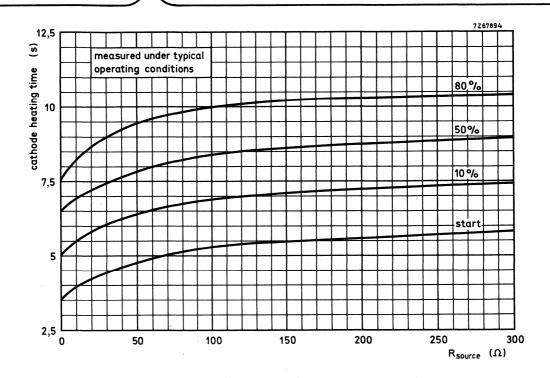

LIMITING VALUES (Design maximum rating system)

Voltages are specified with respect to grid 1 unless stated otherwise.


그 그는 그는 그림, 그는 그림을 하고 있는 그들은 가는 가는 그를 가는 취임 중심을 깨워 가는 것이 하지?				
Final accelerator voltage	V _{a, g} 3, g5	max. min.		kV*
Grid 4 voltage		umu.	10	kV
positive	V _g 4	max.	500	V
negative	$-V_{g4}$	max.	200	
	* 94	max.	200	
Grid 2 voltage	V_{g2}	min.	80	
Cathode to grid 1 voltage				
positive	v_k	max.	200	٧
positive peak	V_{kp}	max.	400	V**
negative	$-v_k$	max.	0	V
negative peak	$-V_{kp}$	max.	2	V
Cathode-to-heater voltage	V _{k/f}	max.	100	V
CIRCUIT DESIGN VALUES				
Grid 4 current				
positive	l _g 4	max.	25	μΑ
negative	-I _{g4}	max.	25	μΑ
Grid 2 current				
positive	l _{g2}	max.	5	μΑ
negative	$-I_{g2}$	max.	5	μΑ
MAXIMUM CIRCUIT VALUES				
Resistance between cathode and heater	R _{k/f}	max.	1	Ω M
Impedance between cathode and heater	Z _{k/f} (50 Hz)	max.	0,1	мΩ
Grid 1 circuit resistance	R _{g1}	max.	1,5	
Grid 1 circuit impedance	Z _{g1} (50 Hz)	max.	0,5	

^{*} The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.

^{**} Maximum pulse duration 22% of a cycle but max. 1,5 ms.



Final accelerator current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5}$ = 12 kV.

Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.3 \times 10^{-3}$$

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

34 cm (14 in), 90°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA

Face diagonal	34 cm (14 in)
Deflection angle	900
Overall length	max. 287 mm
Neck diameter	20 mm
Heating	11 V, 140 mA
Grid 2 voltage	130 V
Anode voltage	12 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5s

SCREEN

Metal-backed phosphor	P4
Luminescence	white
Light transmission of face glass	48%
Useful diagonal	min. 322 mm
Heaful width	min 270 mm

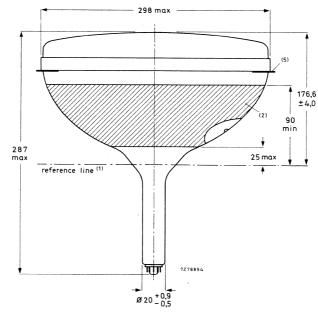
Useful width min. 270 mm Useful height min. 210 mm

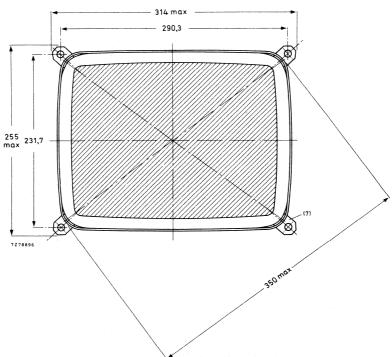
HEATING

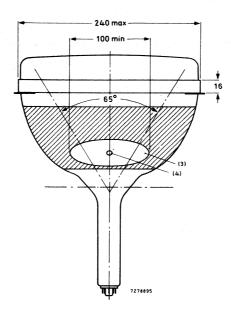
Indirect by a.c. or d.c.; parallel supply

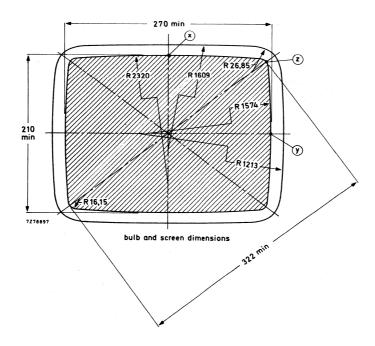
Heater voltage	V_{f}	11 V
Heater current	lf	140 mA
Limits (Absolute maximum rating system) of r.m.s. heater voltage, measured in any 20 ms	v_f	max. 12,7 V*

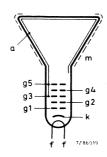
For heating time as a function of source impedance see last page of this data sheet.

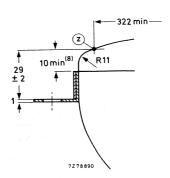

For maximum cathode life it is recommended that the heater supply be regulated at 11 V.

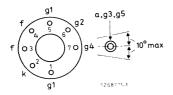

^{*} This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

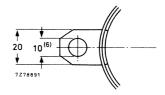

MECHANICAL DATA

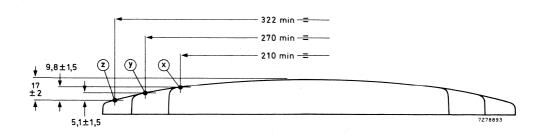

Dimensions in mm


Notes are given after the drawings









Mounting position

any

Nett mass

approx. 3,6 kg

Bulb contact designation

IEC 67-III-2; JEDEC J1-21

Base designation

JEDEC E7-91

Basing

7GR

The socket for this base should not be mounted rigidly; it should have flexible leads and be allowed to move freely.

Notes to outline drawings on the preceding pages

- 1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (gauge D).
- 2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing. The external conductive coating must be earthed.
- 3. This area must be kept clean.
- 4. Recessed cavity contact IEC67-III-2.
- 5. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 6. The mounting screws in the cabinet must be situated inside a circle of 7 mm drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.
- 7. Electrical contact between the metal band and mounting lugs is guaranteed.
- 8. Distance from reference point Z to any hardware.

CAPACITANCES

Anode to external conductive coating	$C_{a,g3,g5/m}$ $< 1100 pF > 450 pF$
Anode to metal band	C _{a,g} 3,g5/m' 150 pF
Cathode to all	C _k 3 pF
Grid 1 to all	C _{g1} 7 pF

FOCUSING electrostatic

DEFLECTIONmagneticDiagonal deflection angle90°Horizontal deflection angle82°Vertical deflection angle67°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m. Maximum distance between centre of field of this magnet and reference line: 47 mm

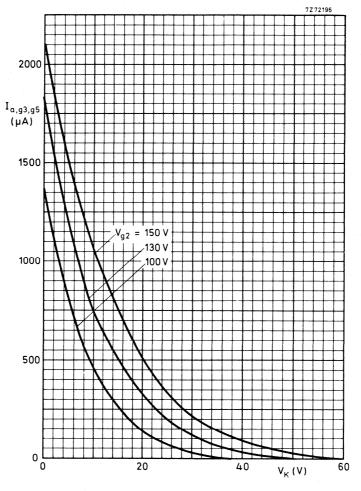
TYPICAL OPERATING CONDITIONS

Cathode drive service

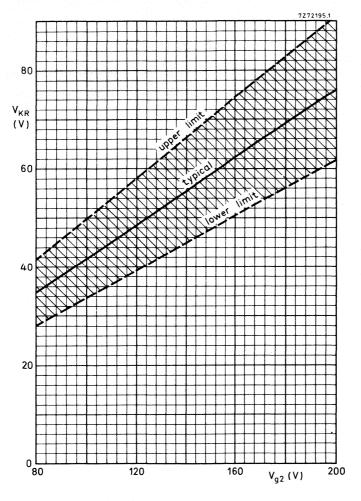
Voltages are specified with respect to grid 1

Anode voltage	V _{a,g} 3,g5	12 kV
Focusing electrode voltage	V_{g4}	0 to 130 V*
Grid 2 voltage	V_{g2}	130 V
Cathode voltage for visual extinction of focused raster	v_{KR}	45 to 65 V

^{*} Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and + 130 V (e.g. two taps: 0 V and 130 V). The optimum focusing voltage of individual tubes may be between -150 and + 150 V).

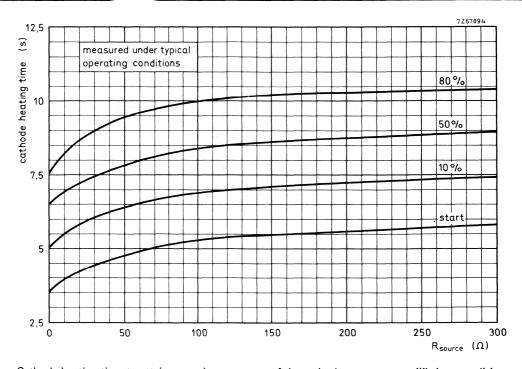

LIMITING VALUES (Design maximum rating system)

Voltages are specified with respect to grid 1 unless stated otherwise.


Anode voltage	V _{a,g} 3,g5	max. min.		kV* kV
Grid 4 voltage				
positive	V_{g4}	max.	1000	
negative	$-v_{g4}$	max.	200	V
Grid 2 voltage	V_{g2}	max.	200	٧
Cathode voltage	3 -			
positive	v_{k}	max.	200	V
positive peak	V_{kp}	max.		V**
negative	$-v_k$	max.		V
negative peak	$-V_{kp}$	max.	2	V
Cathode-to-heater voltage	V _{k/f}	max.	100	٧
CIRCUIT DESIGN VALUES				
Grid 4 current				
positive	l _a 4	max.	25	μΑ
negative	^լ ց4 — ^լ ց4	max.	25	μΑ
Grid 2 current				
positive	l _{a2}	max.	5	μΑ
negative	l _{g2} −l _{g2}	max.	5	μΑ
MAXIMUM CIRCUIT VALUES				
Resistance between cathode and heater	R _{k/f}	max.	1	Ω M
Impedance between cathode and heater	Z _{k/f} (50 Hz)	max.	0,1	$M\Omega$
Grid 1 circuit resistance	R _{g1}	max.		$M\Omega$
Grid 1 circuit impedance	Z _{q1} (50 Hz)	max.		MΩ
Sita i situate impodunoc	-g1 (30 112)	max.	0,0	14175

^{*} The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.

^{**} Maximum pulse duration 22% of a cycle but max. 1,5 ms.



Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5}$ = 12 kV.

Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.3 \times 10^{-3}$$

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

 $44~\rm cm$ (17 in), $110^{\rm o}$, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy.

A special feature of this tube is its short cathode heating time.

The tube is designed for "push through" application and is provided with four metal lugs for mounting into a cabinet.

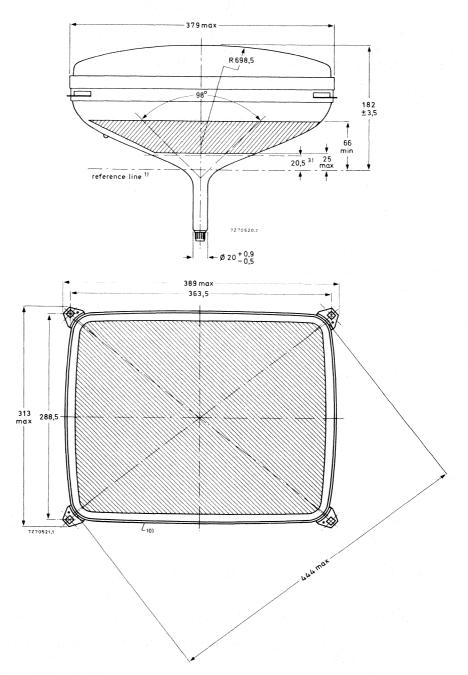
	QUICK REFERENCE DATA			
Face diagonal			44	cm (17 in)
Deflection angle			1100	
Overall length		max.	288	mm
Neck diameter			20	mm
Heating		11 V,	140	mA
Grid no. 2 voltage			130	V
Final accelerator voltage			15	kV
Quick heating cathode		with a typic legible pict within 5 s.		

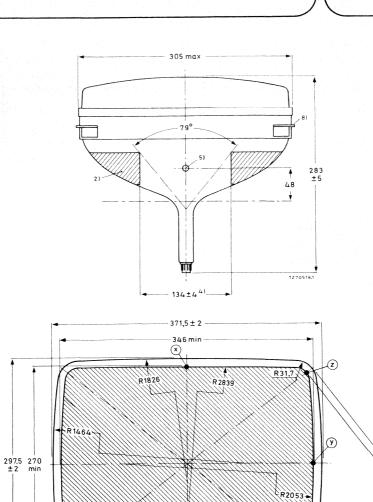
SCREEN

Metal-backed phosphor				
Luminescence		white		
Light transmission of face glass		≈	48	%
Useful diagonal		≥ 2	413	mm
Useful width		≥	346	mm
Useful height		≥	270	mm

HEATING

Indirect by a.c. or d.c.

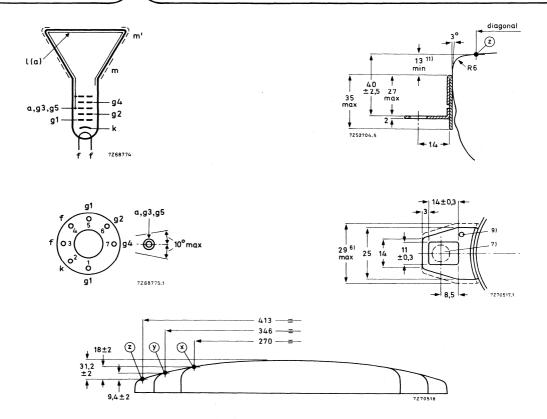

Heater voltage	$v_{\mathbf{f}}$		11	V
Heater current	$I_{\mathbf{f}}$		140	mA
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms	$V_{\mathbf{f}}$	max.	12,7	V *)


For heating time as a function of source impedance see last page of this data sheet.

^{*)} This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

MECHANICAL DATA

Notes are given after the drawings.



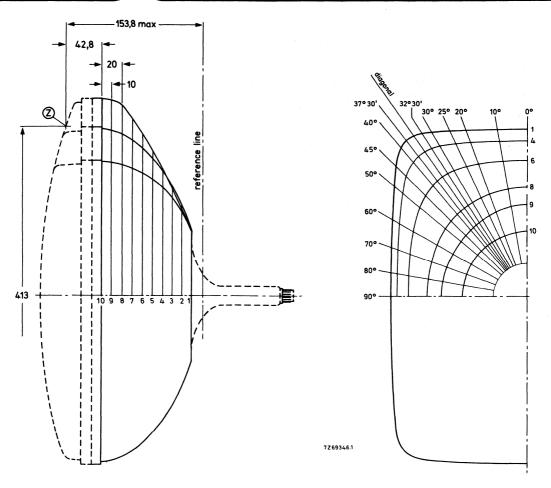
bulb and screen dimensions

R20,25

7270522

413 min

Mounting position: any


Net mass : approx. 6 kg
Base : JEDEC E7-91

The socket for the base should not be mounted rigidly, it should have flexible leads and

be allowed to move freely.

NOTES TO OUTLINE DRAWING

- 1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (gauge G).
- The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.The external conductive coating must be earthed.
- 3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
- 4. This area must be kept clean.
- 5. Recessed cavity contact IEC67-III 2.
- 6. Minimum space to be reserved for mounting lug.
- 7. The mounting screws in the cabinet must be situated inside a circle of 7,5 mm drawn around the true geometrical positions i.e. at the corners of a rectangle of 363,5 mm x 288,5 mm.
- 8. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 9. The metal rim-band must be earthed. The hole of 3 mm dia in each lug is provided for this purpose. Electrical contact between the metal band and mounting lugs is guaranteed.
- 10. Max. curvatures of the outside rim-band are: nominal bulb radius + 4 mm.
- 11. Distance from reference point Z to any hardware.

												·	,		A44-	510W
Sec-	Nom. distance		Distance from centre (max values)													
tion	from section 1	00	10 ⁰	20 ⁰	25°	30°	32 ⁰ 30'	diag.	37 ⁰ 30'	40°	45 ⁰	50°	60°	70 ⁰	80°	90°
10	90	73,8	73, 6	73, 1	72,9	72,6	72, 5	72, 3	72, 2	72, 1	71,9	71,8	71,7	71,7	71,8	71,9
9	80	104,7	103,9	102, 1	101,0	99, 9	99, 4	98, 6	98,4	98,0	97, 2	96,5	95,6	95, 2	95, 2	95,3
8	70	123, 9	124,0	123,8	123, 5	123,0	122, 6	122,0	121,8	121, 2	120, 1	118,7	116,0	113,5	111,7	111,1
. 7	60	140, 4	141,3	143, 3	144,1	144,5	144, 5	144,0	143,8	143, 2	141, 2	138,6	132,7	127,3	123,8	122,5
6	50	154,8	156, 3	160, 3	162, 5	164, 3	164, 9	164, 7	164,5	163,7	160,5	156,0	146, 1	138, 1	133, 2	131,5
5	40	166,9	168,9	174,5	178, 1	181,6	183, 1	183, 4	183, 2	182, 1	177, 2	170, 2	156, 6	146,6	140,8	138,9
4	30	176,8	179, 1	185, 9	190,9	196, 3	198, 9	200,0	199,8	198, 4	191, 2	181, 2	164, 4	153,0	146,7	144,6
3	20	184, 1	186, 6	194,4	200,4	208,0	212, 0	214,6	214, 3	212, 6	202,0	189,0	169,6	157, 4	150,8	148,6
2	10	188, 6	191, 2	199, 3	205,6	213, 9	218, 4	221,3	221, 2	219, 2	207, 2	193, 1	172,9	160, 4	153,6	151, 4
1	0	190,0	192, 6	200, 7	207, 1	215, 3	219, 9	222, 7	222, 5	220, 5	208,6	194, 4	174, 1	161, 5	154, 7	152, 5

CAPACITANCES

Final accelerator to external conductive coating	$C_{a,g3,g5/2}$	m <1300 >700	pF pF
Final accelerator to metal rimband	$C_{a,g3,g5/2}$	m' 200	pF
Cathode to all	$C_{\mathbf{k}}$	3	pF
Grid no. 1 to all	$^{\mathrm{C}_{\mathbf{g}1}}$	7	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	1100
Horizontal deflection angle	980
Vertical deflection angle	790

PICTURE CENTRING MAGNET

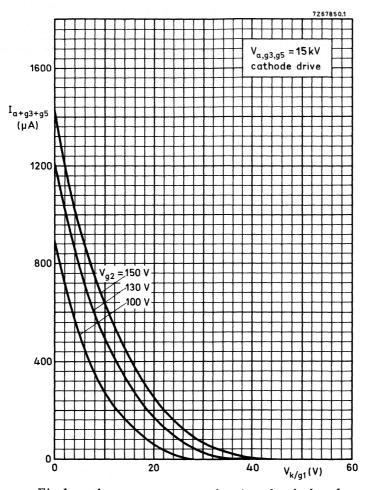
Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Maximum distance between centre of filed of this magnet and reference line: 47 mm.

TYPICAL OPERATING CONDITIONS

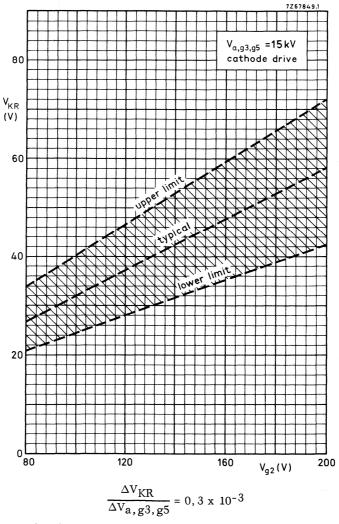
Cathode drive service

Voltages are specified with respect to grid no. 1

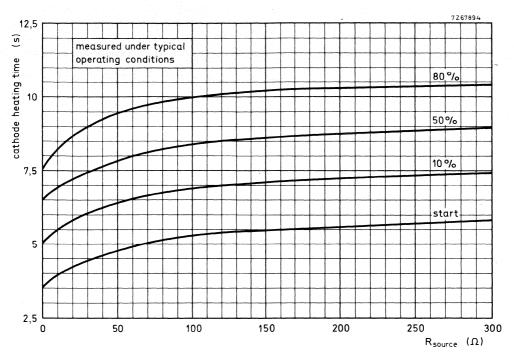
Final accelerator voltage	$V_{a,g3,g5}$	15	kV
Focusing electrode voltage	${ m v_{g4}}$	0 to 130	V *)
Grid no. 2 voltage	v_{g2}	130	V
Cathode voltage for visual extinction of focused raster	v_{KR}	30 to 50	v


^{*)} Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 V and + 130 V (e.g. two taps, 0 V and 130 V).

The optimum focus voltage of individual tubes may be between -100 V and +200 V.


LIMITING VALUES (Design max. rating system)				
Final accelerator voltage at I _{a,g3,g5} = 0	$V_{a,g3,g5}$	max. min.	17 10	kV*) kV
Grid no. 4 voltage				
Positive	${ m v_{g4}}$	max.	500	V
Negative	$-V_{g4}$	max.	200	V
Grid no.2 voltage	$V_{g2/k}$	max.	200	$\mathbf{v}_{\mathbf{v}}$
Cathode to grid no. 1 voltage,				
positive	$V_{k/g1}$	max.	200	\mathbf{V}_{α}
positive peak	$V_{k/g1p}$	max.	400	V^{**}
negative	$-V_{k/g1}$	max.	0	V
negative peak	$-V_{k/g1p}$	max.	2	V
Cathode-to-heater voltage	$V_{\mathbf{k}/\mathbf{f}}$	max.	100	V
CIRCUIT DESIGN VALUES				
Grid no.4 current				
positive	I_{g4}	max.	25	μA
negative	$-I_{\mathbf{g4}}$	max.	25	μA
Grid no. 2 current				
positive	I_{g2}	max.	5	μA
negative	$-I_{g2}$	max.	5	μΑ
MAXIMUM CIRCUIT VALUES				
Resistance between cathode and heater	$R_{k/f}$	max.	1	$M\Omega$
Impedance between cathode and heater	$Z_{f/k}$ (50 Hz)	max.	0,1	$M\Omega$
Grid no. 1 circuit resistance	R_{g1}	max.	1,5	$M\Omega$
Grid no. 1 impedance	Z _{g1} (50 Hz)	max.	0,5	$M\Omega$

^{*)} The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.


^{**)} Maximum pulse duration 22% of a cycle but max. 1,5 ms.

Final accelerator current as a function of cathode voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

44 cm (17 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

	QUICK REF	ERENCE DATA		
Face diagonal				44 cm
Deflection angle				110°
Overall length			max.	291 mm
Neck diameter				28,6 mm
Heating			6, 3	V, 240 mA
Grid no. 2 voltage				130 V
Final accelerator voltage				20 kV
Quick heating cathode			with a typical tulegible picture within 5 s.	

SCREEN

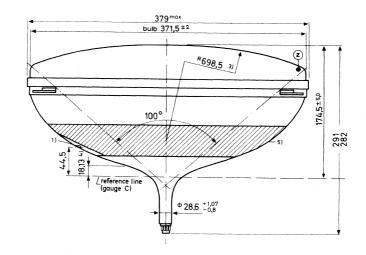
Metal-backed phosphor

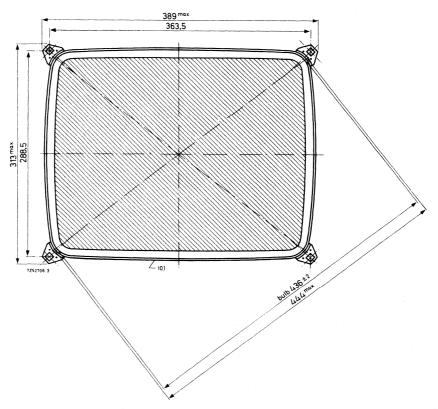
Luminescence	white	
Light transmission of face glass	≈	48 %
Useful diagonal	≥ 2	413 mm
Useful width	≥	346 mm
Useful height	≥	270 mm

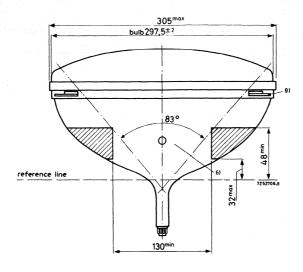
HEATING

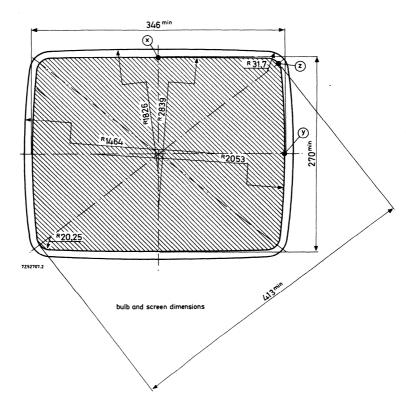
Indirect by a.c. or d.c.

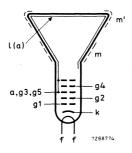
Heater voltage	v_f		6, 3 V
Heater current	$I_{\mathbf{f}}$		240 mA
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms	$V_{\mathbf{f}}$	max. min.	7, 3 V*) 5, 3 V

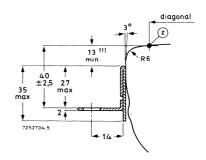

For heating time as a function of source impedance see last page of this data sheet.

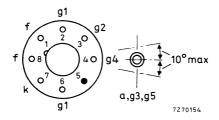

^{*)} This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

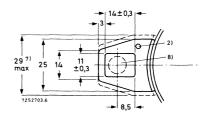

MECHANICAL DATA

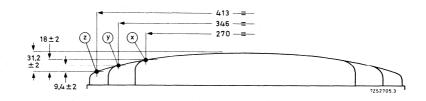

Dimensions in mm


Notes are given after the drawings.









Mounting position: any

Base

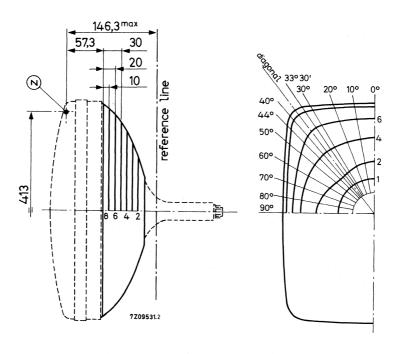
: neo eightar 7 pin JEDEC B7-208, B8H, IEC 67-I-31a

Net mass

: approx. 6 kg

The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of $40\ \mathrm{mm}$.

The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.


NOTES TO OUTLINE DRAWING

- 1. Small cavity contact IEC 67-III-2.
- 2. The metal rim-band must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
- 3. Spherical face-plate.
- 4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C (18, 13 mm).
- 5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.

 The external conductive coating must be earthed.
- 6. This area must be kept clean.
- 7. Minimum space to be reserved for mounting lug.
- 8. The mounting screws in the cabinet must be situated inside a circle of 7.5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of $363.5 \text{ mm} \times 288.5 \text{ mm}$.
- 9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm.
- 10. Max. curvatures of the outside rim-band are nominal bulb radius + 4 mm.
- 11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

Dimensions in mm

	Distance from centre (max. values)													
Sec-	Nom. distance	00	10°	20°	300	33°30'	36 ⁰ 30′	40°	44 ⁰	50°	60°	70°	80°	90°
tion	from point "Z"	Long					Diagonal							Short
1	128,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0
2	117,3	95,9	95, 2	93,0	92,3	92,1	92, 1	92, 3	92,6	93, 1	93,8	94,6	94,9	95, 1
3	107,3	118,1	117,8	118,3	118,3	118,6	119, 2	117,8	117,7	117,2	115,5	113, 3	111,2	109,8
4	97,3	135,0	136,1	138, 3	139, 9	141,0	141,6	141,1	138,5	135,4	130,5	125,6	121,8	120,8
5	87,3	149,5	151,1	155, 1	159,1	161,3	162,0	161,5	157,5	151,0	142,0	135,8	130,8	129,5
6	77,3	162,5	164,0	168,8	176,0	179,0	179,5	178,0	173,5	163,4	150,8	143, 3	138,3	136, 4
7	67,3	172,5	174,4	180, 1	190,0	194, 1	196, 3	194,9	186,8	174,5	159, 1	149, 3	143, 9	141,7
8	57,3	179,7	183,1	189, 3	201,1	207, 4	210, 9	206, 1	196,0	182,8	165,5	154,0	147,9	145,6

CAPACITANCES

Final accelerator to external conductive coating	$C_{a,g3,g5/m}$ $\stackrel{<}{>}$	1300 700	pF pF
Final accelerator to metal band	$\mathrm{C}_{a,\mathrm{g3,g5/m'}}$	200	pF
Cathode to all	$C_{\mathbf{k}}$	3	pF
Grid no. 1 to all	${f C_{g1}}$	7	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 1100 Horizontal deflection angle 1000 Vertical deflection angle 830

PICTURE CENTRING MAGNET

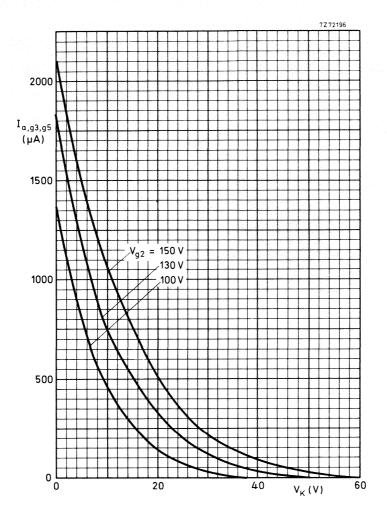
Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 57 mm.

TYPICAL OPERATING CONDITIONS

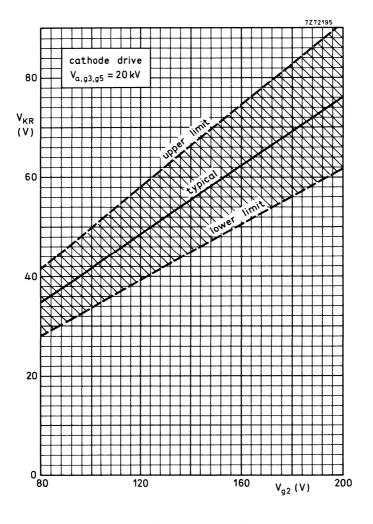
Cathode drive service

Voltages are specified with respect to grid no. 1

Final accelerator voltage	$V_{a,g3,g5}$	20 kV
Focusing electrode voltage	${ m v_{g4}}$	0 to 130 V ¹)
Grid no. 2 voltage	${ m v_{g2}}$	130 V
Cathode voltage for visual extinction		
of focused raster	v_{KR}	42 to 62 V


 $^{^{1}}$) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and + 130 V (e.g. two taps, 0 V and 130 V). The optimum focus voltage of individual tubes may be between -100 V and +200 V.

LIMITING VALUES (Design max. rating system)				
Final accelerator voltage at $I_{a,g3,g5} = 0$	$V_{a,g3,g5}$	max. min.	23 14	kV*) kV
Grid no. 4 voltage,				
positive	v_{g4}	max.	1000	V
negative	$-V_{g4}$	max.	500	V
Grid no. 2 voltage	v_{g2}	max. min.	200 80	V**) V
Cathode to grid no. 1 voltage,				
positive	$V_{k/g1}$	max.	200	V
positive peak	$V_{k/g1_p}$	max.	400	V***)
negative	$-V_{k/g1}$	max.	0	V
negative peak	$^{-V}_{k/g1_p}$	max.	2	V
Cathode-to-heater voltage	v_{kf}	max.	100	V
CIRCUIT DESIGN VALUES				
Grid no. 4 current,				
positive	$I_{f g4}$	max.	25	μΑ
negative	$-I_{g4}$	max.	25	μA
Grid no. 2 current,				
positive	$I_{\mathbf{g}2}$	max.	5	μA
negative	$-I_{g2}$	max.	5	μA
MAXIMUM CIRCUIT VALUES				
Resistance between cathode and heater	$R_{k/f}$	max.	1,0	$M\Omega$
Impedance between cathode and heater	$\mathrm{Z}_{\mathrm{k/f}}$ (50 Hz)	max.	0,1	$M\Omega$
Grid no. 1 circuit resistance	R_{g1}	max.	1,5	$M\Omega$
Grid no. 1 circuit impedance	Z_{g1} (50 Hz)	max.	0,5	$M\Omega$


^{*)} The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.

^{**)} At $V_{k/g1} = 0 V$.

^{***)} Maximum pulse duration 22% of a cycle but maximum 1,5 ms.

Final accelerator current as a function of cathode voltage $V_a,\,g_3,\,g_5\,=\,20~\text{kV}$

$$\frac{\Delta V_{KR}}{\Delta V_{a, g_3, g_5}} = 0,75 \times 10^{-3}$$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

50 cm (20 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA				
Face diagonal		50 cm		
Deflection angle		1100		
Overall length		max. 319 mm		
Neck diameter		28,6 mm		
Heating		6,3 V, 240 mA		
Grid no.2 voltage		130 V		
Final accelerator voltage		20 kV		
Quick heating cathode	legil	a typical tube a ble picture will appear in 5 s.		

SCREEN

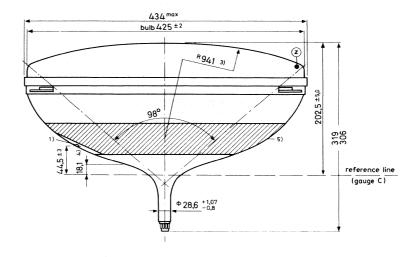
Metal-bac	ked	phosp	hor
-----------	-----	-------	-----

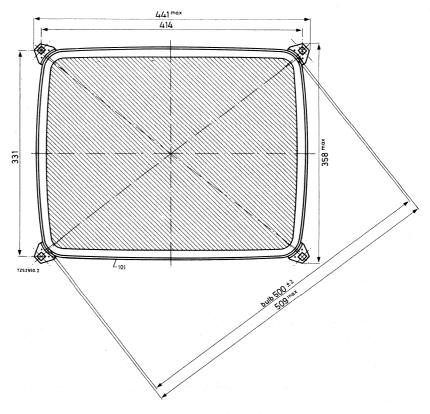
Luminescence		
Lummescence	white	
Light transmission of face glass	≈	45 %
Useful diagonal	≥	473 mm
Useful width	≥	394 mm
Useful height	≥	308 mm

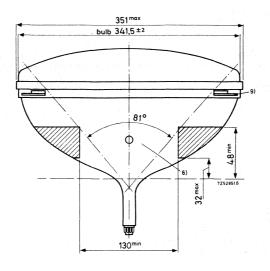
HEATING

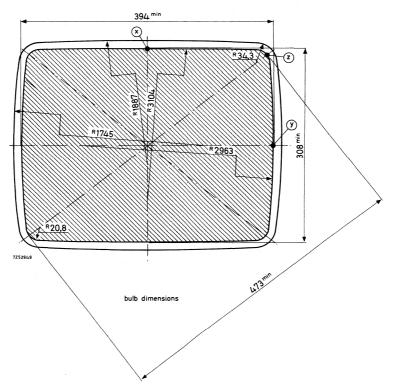
Indirect by a.c. or d.c.

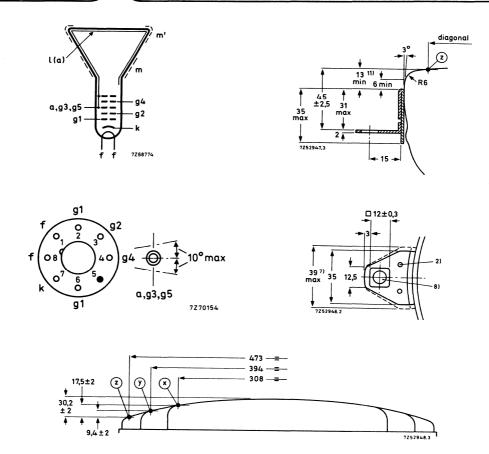
Heater voltage	$v_{\mathbf{f}}$		6,3 V
Heater current	I _f		240 mA
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms	$V_{\mathbf{f}}$	max.	7, 3 V *)


For heating time as a function of source impedance see last page of this data sheet.


^{*)} This limit also applies during equipment warming-up. Use of the tube in a series heater chain it not allowed.


MECHANICAL DATA

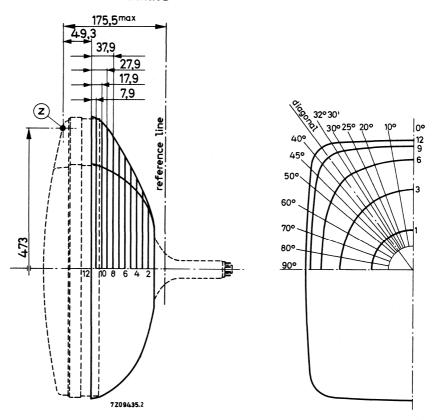

Dimensions in mm


Notes are given after the drawings.

Mounting position: any

Base :

: neo eightar 7 pin JEDEC B7-208, B8H, IEC 67-1-31a


Net mass : approx. 8,5 kg

The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of $40~\mathrm{mm}$.

NOTES TO OUTLINE DRAWINGS

- 1. Small cavity contact IEC 67-III-2.
- 2. The metal rim-band must be earthed. The holes of 3 mm dia in each lugare provided for this purpose.
- 3. Spherical face plate.
- 4. End of guaranteed contour. The maximum neck-and-cone contour is given by the reference line gauge C (18,13 mm).
- 5. The configuration of the external conductive coating may be different but contains the the contact area as shown in the drawing. The external conductive coating must be earthed.
- 6. This area must be kept clean.
- 7. Minimum space to be reserved for mounting lug.
- 8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position i.e. at the corners of a rectangle of 414 mm x 331 mm.
- 9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm.
- 10. Max. curvatures of the outside rim-band are: nominal bulb radius + 4 mm.
- 11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

A50-120W A50-520W															
	Distance from centre (max. values)														
Sec- tion	Nom distance from point "Z"	00 Long	10º	20°	25º	30°	320 30'	36º 30' Diagonal	400	450	500	600	700	800	900 Short
1	157,2	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0
2	147,2	109,2	107, 8		106,4	106,0	105,9	105,5	105,0	104,5	103,9	102,8	102,6	102,8	103,4
3	137,2	136,7	134,5	133,7	133,0	132,3	131,8	130,7	129,3	127,5	125,3	121,9	120,7	120,2	120,2
4	127,2	157,2	156,5	155,7	154,8	153, 8	153,0	151,5	150,0	147,5	144,7	138,7	134,9	133,4	132,5
5	117,2	174,2	174,0	174,4	174,3	173,4	172,8	171,0	169,3	165,7	160,8	152,0	146,5	143,7	142,3
6	107,2	185,8	186,3	188,4	190,0	191,2	191,2	189,5	186,7	181,7	174,7	163,2	156,0	151,7	150,4
7	97,2	194,5	195,7	202,2	203,8	206,9	207,3	206,4	203,5	196,4	187,4	173.0	163,5	158,6	156,9
8	87,2	201,7	203,8	210,2	215,4	220,6	222,1	222,2	218,8	210,5	198,8	181,2	170,3	164,7	162,7
9	77,2	208,2	210,6	218,5	224,8	231,4	234,8	236,5	233,5	222,2	208,5	188.5	176,6	169.9	167.9
10	67,2	213,1	215,9	225,2	231,9	239,8	244,3	248,5			216,0				
11	57,2	215,6	219,0	228,2	235,4	244,5	249,6	253,7			220,5				
12	49,3	217,0	219,8	229,3	236,6	246,0	251,2	254,5			222,0				

CAPACITANCES

Time! constants and and address and a	C	<	1500	pF
Final accelerator to external conductive coating	$C_{a,g3,g5/m}$	>	1000	pF
Final accelerator to metal band	$C_{a,g3,g5/m'}$		250	pF
Cathode to all	$C_{\mathbf{k}}$		3	pF
Grid no. 1 to all	$C_{\mathbf{g}1}$		7	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal 1100 Horizontal deflection angle 980 Vertical deflection angle 810

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 57 mm.

TYPICAL OPERATING CONDITIONS

Cathode drive service

Voltages are specified with respect to grid no. 1

Final accelerator voltage	$v_{a,g3,g5}$	20	kV
Focusing electrode voltage	$v_{oldsymbol{g4}}$	0 to 130	V*)
Grid no. 2 voltage	v_{g2}	130	\mathbf{v}
Cathode voltage for visual extinction of focused raster	V _K R	42 to 62	V

^{*)} Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps, 0 V and 130 V).

The optimum focus voltage of individual tubes may be between -100 V and +200 V.

LIMITING VALUES (Design max. rating system)			
Final accelerator voltage at $I_{a,g3,g5} = 0$	$V_{a,g3,g5}$	max. min.	23 14	kV*) kV
Grid no. 4 voltage				
positive	v_{g4}	max.	1000	V
negative	$-V_{g4}$	max.	500	V
Grid no. 2 voltage	v_{g2}	max.	200	V**)
	84	min.	80	V
Cathode to grid no. 1 voltage				
positive	$V_{\mathbf{k}/\mathbf{g}1}$	max.	200	V
positive peak	V _{k/g1p}	max.	400	A ***)
negative	$-V_{k/g1}$	max.	0	V
negative peak	$-V_{k/g1p}$	max.	2	V
Cathode-to-heater voltage	$v_{\mathbf{kf}}$	max.	100	$\mathbf{V}_{\mathbf{v}}$
CIRCUIT DESIGN VALUES				
Grid no. 4 current,				
positive	$I_{\mathbf{g4}}$	max.	25	μA
negative	$-I_{g4}$	max.	25	μΑ
Grid no. 2 current,				
positive	$I_{\mathbf{g}2}$	max.	. 5	μA
negative	$-I_{g2}$	max.	5	μΑ
MAXIMUM CIRUIT VALUES				
Resistance between cathode and heater	$R_{k/f}$	max.	1, 0	$M\Omega$
Impedance between cathode and heater	$\mathrm{Z_{k/f}}$ (50 Hz)	max.	0, 1	$M\Omega$

 R_{g1}

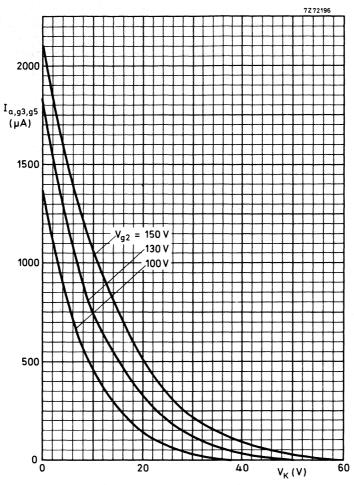
max.

 Z_{g1} (50 Hz) max.

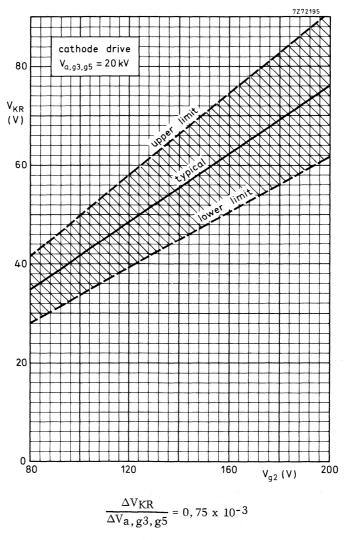
1,5 $M\Omega$

 $M\Omega$

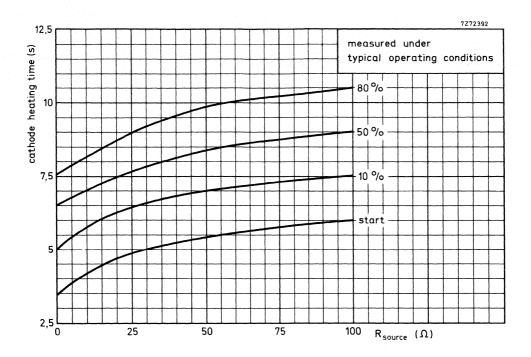
0,5


Grid no. 1 circuit resistance

Grid no. 1 impedance


^{*)} The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.

^{**)} At $V_{g1/k} = 0 \text{ V}$.


^{***)} Maximum pulse duration 22% of a cycle but maximum 1,5 ms.

Final accelerator current as a function of cathode voltage $V_{a,\,g\,3,\,g\,5} = 20~kV$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

DEFLECTION UNITS FOR BLACK & WHITE TV PICTURE TUBES

DEFLECTION UNIT

QUICK REFERENCE DATA

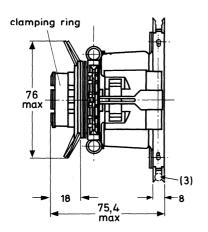
Picture tube diagonal neck diameter	43 cm (17 in), 51 cm (20 in) 28,6 mm
Deflection angle	110º
Line deflection current, raster scan at 18 kV	2,03 A (p-p)
Inductance of line coils	2,09 mH
Field deflection current, raster scan at 18 kV	0,47 A (p-p)
Resistance of field coils	7,4 Ω

APPLICATION

This deflection unit is for use with 1100 black and white picture tubes.

DESCRIPTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the picture tube.


The field deflection coils are wound on a Ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide.

The units meet the self-extinguishing and non-dripping requirements of IEC 65.

For centring and pin-cushion distortion see under "Correction facilities".

MECHANICAL DATA

Dimensions in mm

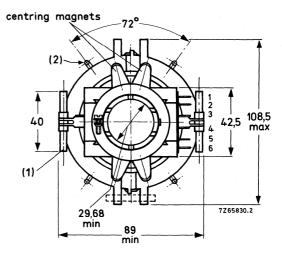


Fig. 1.

- (1) Plastic bonded FXD magnet strips, mounted on brackets.
- (2) For fitting plastic bonded FXD magnets, available under catalogue number 3122 104 94120.
- (3) For fitting plastic bonded FXD magnet rods, available under catalogue number 3122 104 90360.

The units are provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the connection diagrams (Figs 2 and 3).

MOUNTING

The unit should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils	
inductance	2,09 mH ± 5%
resistance	$3,55 \Omega \pm 5\%$
line deflection current for	1.
raster scan, at 18 kV	2,03 A _(p-p) ± 5%
raster scan	440 mm
Field deflection coils	
inductance	17,0 mH ± 5%
resistance	$7,37 \Omega \pm 5\%$
field deflection current for	
raster scan, at 18 kV	0,47 A _(p-p) ± 5%
raster scan	340 mm
Maximum peak voltage between terminals of	
line and field coils (50 Hz)	2500 V
Maximum operating temperature	95 °C

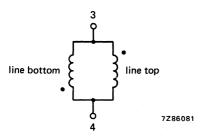


Fig. 2 Line coils.

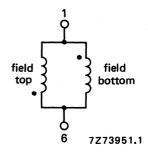
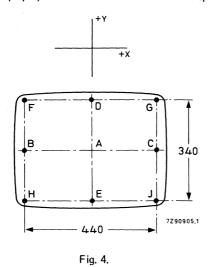



Fig. 3 Field coils.

The beginning of the windings is indicated with •.

Geometric distortion measured without correction and centring magnets (dimensions in mm)

The spreads in raster geometry are tabulated below as deviations from the ideal rectangle at the points indicated. Cartesian coordinates are used to show the extent of deviation resolved along x and y areas. Points A, B, C, D, E are fixed and hence have zero spreads.

Spreads (x,y) per point:

F (-3 ± 4 , + 3 ± 4)

 $G(+3 \pm 4, +3 \pm 4)$

 $H(-3 \pm 4, -3 \pm 4)$

 $J (+3 \pm 4, -3 \pm 4)$

|Fv-Gv|≤5

|Gx-Jx | ≤ 5

|Jy-Hy | ≤ 5

|Hx-Fx | ≤ 5

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the picture tube and the deflection unit can be corrected by means of two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are magnetised diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously.

These centring magnets can not be used for compensating the effects of non-linearity or of phase differences between the synchronisation and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

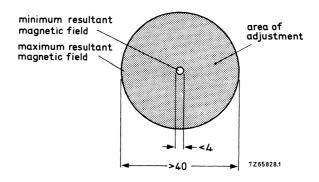


Fig. 5.

For raster geometry

Pin-cushion distortion can be corrected by plastic bonded Ferroxdure magnet strips, which have been mounted on the deflection unit brackets. Limited correction of asymmetrical pin-cushion distortion can be achieved by unequal rotation of these magnets.

Notes

To correct the corners of the raster plastic bonded Ferroxdure magnets can be fitted to the deflection unit, (2), Fig. 1.

To optimize the raster geometry plastic bonded Ferroxdure magnet rods can be fitted to the deflection unit, (3), Fig. 1.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube diagonal neck diameter	24 cm (9 in) 20 mm
Deflection angle	90o
Line deflection current for raster scan, at 10 kV	2,35 A (p-p)
Inductance of line coils	475 μΗ
Field deflection current for raster scan, at 10 kV	0,21 A (p-p)
Resistance of field coils	40 Ω

APPLICATION

This deflection unit is for 24 cm (9 in) 90° black & white picture tubes and monitor tubes for basic displays. The unit is used in conjunction with:

- line output transformer AT2140/16 or AT2140/16B;
- linearity control unit AT4042/08A or linearity corrector AT4042/46.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound fields coils. The line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

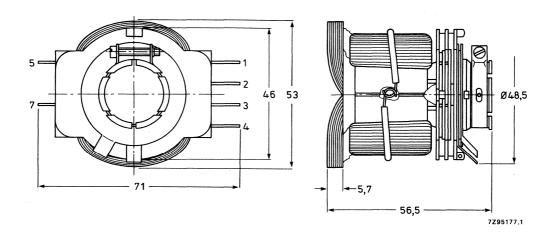


Fig. 1 Deflection unit AT1077/01.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2), terminals 1 and 4

Inductance
Resistance
L/R

Line deflection current, raster scan (168 mm), at 10 kV

Field deflection coils, series connected (Fig. 2), terminals 2 and 3

Inductance Resistance L/R

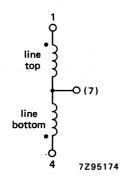
Field deflection current, raster scan (126 mm), at 10 kV

Maximum DC voltage between terminals of line and field coils Maximum operating temperature (average copper temperature) Storage temperature range

Coupling between line and field coils, at 500 Hz

72 mH \pm 5% 40 Ω \pm 5% 1,80 mH/ Ω 0,21 A (p-p) \pm 5% 500 V 95 °C

 $2,35 \text{ A (p-p)} \pm 5\%$


 $475 \mu H \pm 5\%$

 $0.8 \Omega \pm 5\%$

 $594 \mu H/\Omega$

-40 to + 75 °C ≤ 1/50

№ 1/50

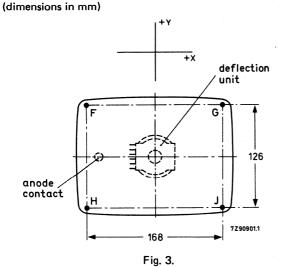

field top (5)
field bottom 3 7295171

Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with .

Geometric distortion measured without centring magnets on a 24 cm (9 in) reference tube

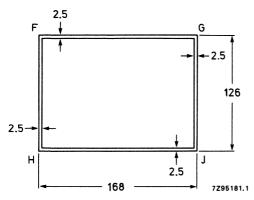


Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

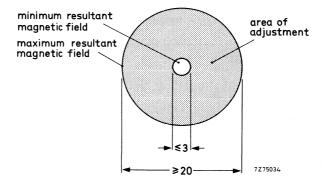


Fig. 5.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube diagonal neck diameter	31 cm (12 in), 34 cm (14 in) 20 mm
Deflection angle	900
Line deflection current for raster scan (12 in), at 12 kV	2,52 A (p-p)
Inductance of line coils	436 μΗ
Field deflection current for raster scan (12 in), at 12 kV	0,22 A (p-p)
Resistance of field coils	33 Ω

APPLICATION

This deflection unit is for 31 cm (12 in) and 34 cm (14 in) 90° picture tubes. The unit is used in conjunction with:

- line output transformer AT2140/16 or AT2140/16B;
- linearity control unit AT4042/08A or linearity corrector AT4042/46.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound fields coils. The line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

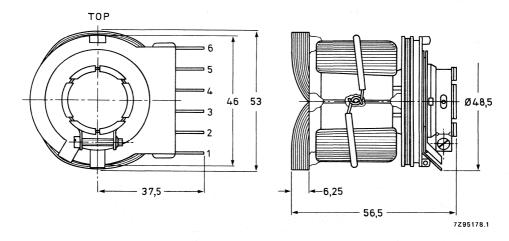


Fig. 1 Deflection unit AT1077/02.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5

	Line deflection d	mis, series connected (Fig. 2a), terminals 2 and 5
-	Inductance	
	Resistance	
	L/R	

Line deflection current, edge to edge (254 mm, 12 in), at 12 kV

Field deflection coils, series connected (Fig. 2b) terminals 3 and 4 Inductance

Resistance

L/R

Field deflection current, edge to edge (201 mm, 12 in), at 12 kV

Maximum d.c. voltage between terminals of line and field coils Maximum operating temperature (average copper temperature) Storage temperature range

Coupling between line and field coils, at 500 Hz

0,80 Ω ± 5% 545 μ H/ Ω ± 5% 2,52 A (p-p) ± 5%
68 mH \pm 5% 33,0 Ω \pm 5% 2,06 mH/ Ω
0,22 A (p-p) ± 5%
500 V

436 µH ± 5%

95 °C -40 to + 75 °C ≤ 1/50

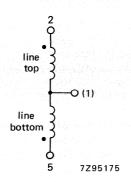


Fig. 2a Line coils.

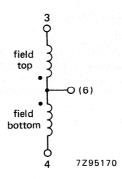
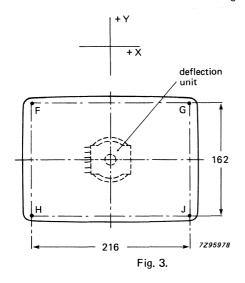
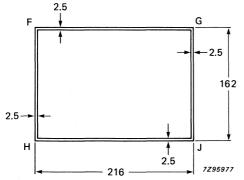




Fig. 2b Field coils.

The beginning of the windings is indicated with •.

Geometric distortion measured without centring magnets, on a 12 in reference tube (dimensions in mm)

 $|Fy-Gy| \le 2$ $|Gx-Jx| \le 2$ $|Jy-Hy| \le 2$ $|Hx-Fx| \le 2$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

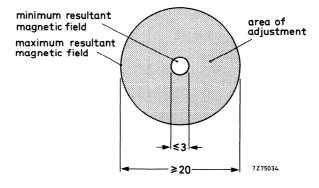


Fig. 5.

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 24 cm (9 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	24 cm (9 in)
Overall length	max. 227 mm
Neck diameter	20 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible
	picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines

APPLICATION

These high resolution tubes are for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M24-306, M24-308, M24-310 and M24-328. Differences between the tubes can be found under 'Dimensional data'.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90 ⁰ approx. 82 ⁰ approx. 67 ⁰
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 850 pF min. 300 pF
Capacitance of external conductive coating to anode**	max. 750 pF min. 300 pF
Capacitance of anode to implosion protection hardware**	approx. 100 pF
Heater voltage	12 V
Heater current at 12 V	130 mA

OPTICAL DATA

Phosphor type	see ''High resolution monoch display tubes, General''		
Light transmission at screen centre			

tube with normal tinted face glass approx. 53% tube with dark tinted face glass approx. 42%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

M24-306 M24-308 M24-310 M24-328

MECHANICAL DATA (see also the figures under Dimensions Data)

Overall length max. 227 mm

Greatest dimensions of tube

diagonal 248,5 mm width 216 mm height 167 mm

Minimum useful screen dimensions (projected)

diagonal222,5 mmhorizontal axis193 mmvertical axis145 mmarea268 cm²Implosion protectionT-band

Bulb EIAJ-JB240AA03 or

Bulb contact designation EIAJ-JB240AA04

Bulb contact designation IEC 67-III-2, EIA-J1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 1,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode current

long-term average value max. $130 \, \mu A$ peak value max. $600 \, \mu A$ Cathode voltage, positive peak value max. $400 \, V$ Heater voltage $12 \, V \pm 10\% \, ^*$ Cathode-to-heater voltage max. $100 \, V$

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current positive		m		μΑ		
negative		· m	nax. 25	μΑ		
Grid 2 current						
positive		m		μA		
negative		, m	nax. 5	μΑ		
MAXIMUM CIRCU	JIT VALUES					
Resistance betweer	n cathode and heater	m	nax. 1,0	ΩM		
Impedance betwee	n cathode and heater	m	nax. 0,1	$M\Omega$		
Grid 1 circuit resist	tance	m	nax. 1,5	$M\Omega$		
Grid 1 circuit impe	dance	rı	nax. 0,5	$M\Omega$		
TYPICAL OPERA	TING CONDITIONS					
Cathode drive; volt	ages specified with respect to grid 1					
Anode voltage		1	2 kV			
Grid 4 (focusing el	ectrode) voltage	0	to 300 V*			
Grid 2 voltage						

Grid drive; voltages specified with respect to cathode

Anode voltage 12 kV

Grid 4 (focusing electrode) voltage 0 to 300 V*

Grid 2 voltage 400 V

Grid 1 cut-off voltage 34 to 64 V**

30 to 60 V**

RESOLUTION

Cathode cut-off voltage

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 168 mm x 126 mm,
- at V₀₂ = 700 V and anode voltage = 12 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the usefull life of the tube, when operated within the given ratings.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 168 \text{ mm} \times 126 \text{ mm}$ line parabola 200 V;

field parabola 100 V.

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

^{**}Visual extinction of focused raster.

M24-306 M24-308 M24-310 M24-328

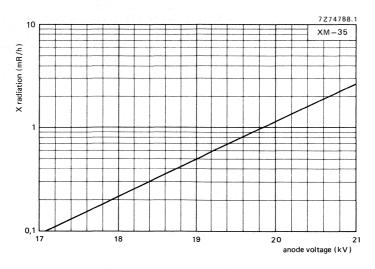


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

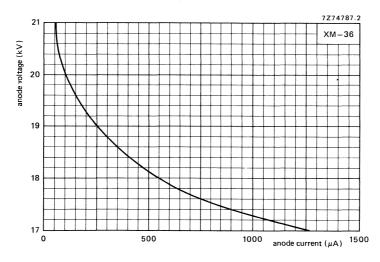


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

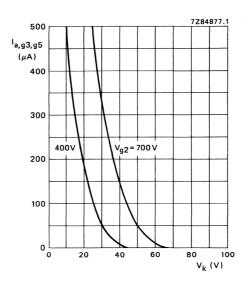


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

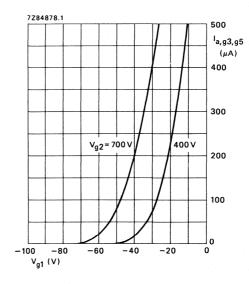


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

M24-306 M24-308 M24-310 M24-328

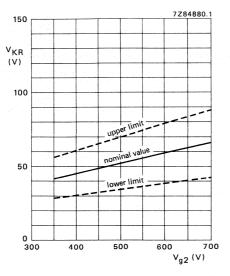


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g}3,g5} = 0.9 \times 10^{-3}.$$

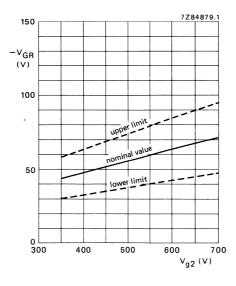
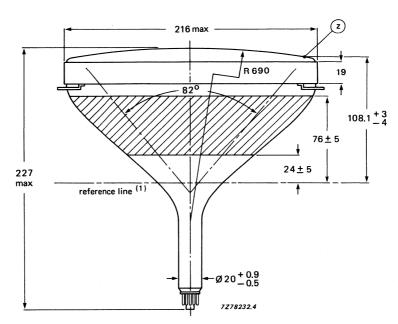



Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive, $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

—► Fig. 7.

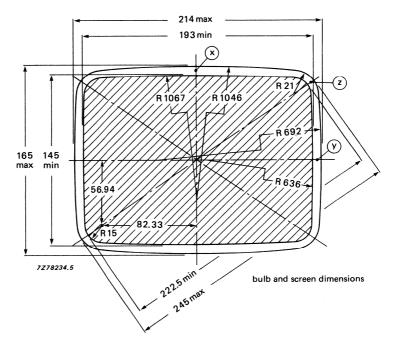


Fig. 8.

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

M24-306 M24-308 M24-310 M24-328

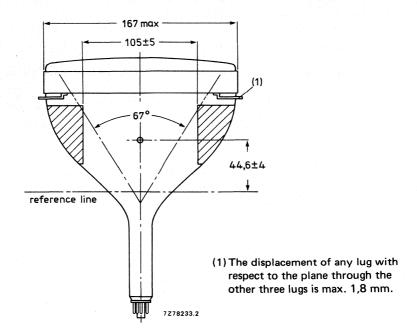


Fig. 9.

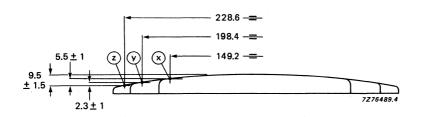


Fig. 10 Screen reference points.

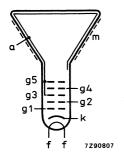


Fig. 11 Electrode configuration.

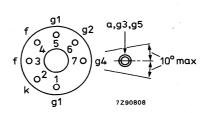


Fig. 12 Pin arrangement.

Front view and lug dimensions of tube M24-306

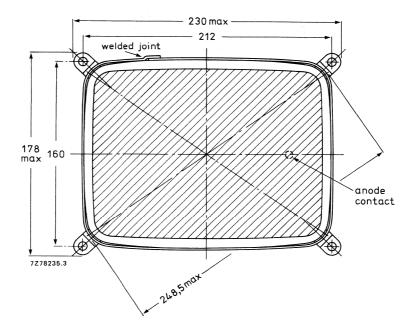


Fig. 13 Tube mounting dimensions; front view.

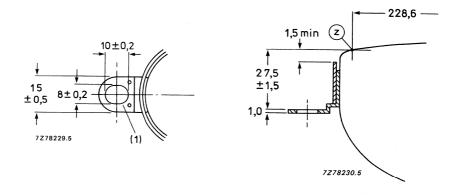


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 212 mm x 160 mm.

M24-306 M24-308 M24-310 M24-328

Front view and lug dimensions of tube M24-308

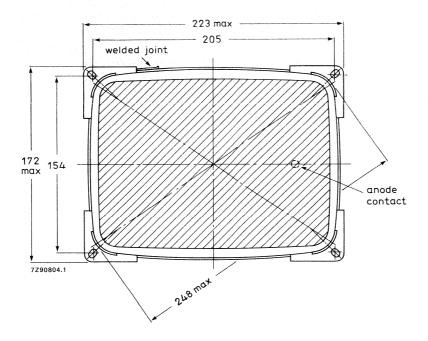


Fig. 16 Tube mounting dimensions; front view.

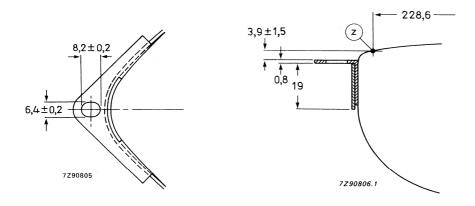


Fig. 17 Lug dimensions.

Fig. 18 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 3,4 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 205 mm x 154 mm.

Front view and lug dimensions of tube M24-310

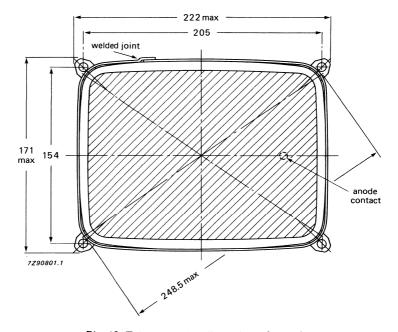


Fig. 19 Tube mounting dimensions; front view.



Fig. 20 Lug dimensions:

Fig. 21 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 4 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 205 mm x 154 mm.

Front view and lug dimensions of tube M24-328 *

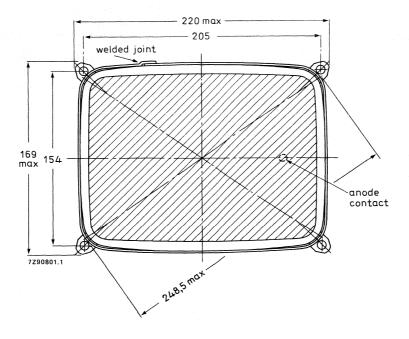


Fig. 22 Tube mounting dimensions; front view.

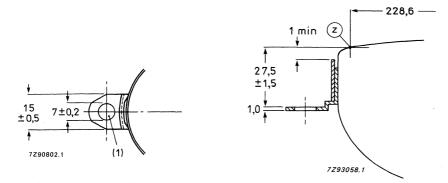


Fig. 23 Lug dimensions.

Fig. 24 Lug position.

- (1) The position of the mounting screws in the cabinet must be within a circle of 4 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 205 mm x 154 mm.
- * This tube is still under development; data are provisional.

Maximum cone contour

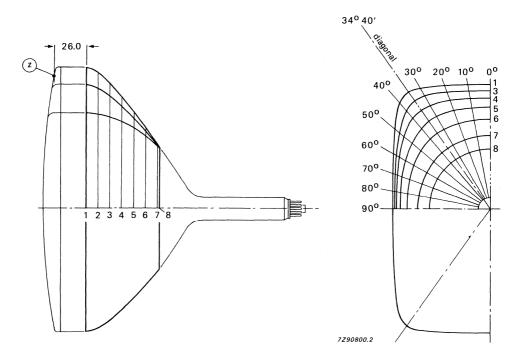


Fig. 25 Cone contour.

Table 1 Cone contour data

	nom.				max.	distance	from c	entre				
section	distance from section 1	00	100	200	300	diag.	400	5 0 0	60º	700	80o	90o
1	0	108,3	109,8	114,2	121,9	123,9	121,6	106,6	95,6	88,88	85,0	83,8
2	10	105,4	106,8	111,0	117,7	119,4	117,4	104,4	93,9	87,3	83,7	82,5
3	20	98,0	99,2	102,9	107,8	109,2	108,1	99,1	90,0	83,9	80,6	79,5
4	30	88,4	89,4	92,2	95,7	96,6	96,2	91,0	84,2	79,0	76,1	75,1
5	40	78,1	78,9	81,0	83,2	83,8	83,8	81,2	76,8	72,9	70,5	69,7
- 6	50	66,8	67,4	68,8	70,4	70,9	71,2	70,3	68,1	65,6	63,8	63,2
7	60	54,5	54,9	55,8	56,8	57,2	57,5	57,5	56,8	55,8	54,9	54,5
8	61,2	53,0	53,3	54,2	55,1	55,4	55,7	55,7	55,2	54,3	53,4	53,1

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 24 cm (9 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle		900
Face diagonal		24 cm (9 in)
Overall length		max. 227 mm
Neck diameter		20 mm
Heating		12 V/75 mA
Grid 2 voltage		400 V
Anode voltage		12 kV
Resolution		approx. 1000 lines

APPLICATION

These high resolution tubes are for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M24-322 and M24-326. Differences between the tubes can be found under 'Dimensional data'.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90° approx. 82° approx. 67°
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 5 pF max. 6 pF
Capacitance of external conductive coating to anode*	max. 850 pF min. 300 pF
Capacitance of external conductive coating to anode**	max. 750 pF min. 300 pF
Capacitance of anode to implosion protection hardware**	approx. 100 pF
Heater voltage	12 V
Heater current at 12 V	75 mA

OPTICAL DATA

Phosphor type	see "High resolution monochrome
	display tubes, General"

Light transmission at screen centre
tube with normal tinted face glass
tube with dark tinted face glass
approx. 42%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensions Data)

Greatest dimensions of tube
diagonal 248,5 mm
width 216 mm

width 216 mm height 167 mm

Minimum useful screen dimensions (projected)

diagonal 222,5 mm
horizontal axis 193 mm
vertical axis 145 mm
area 268 cm²
Implosion protection T-band

Bulb EIAJ-JB240AA03 or

EIAJ-JB240AA04

max. 227 mm

Bulb contact designation IEC 67-III-2, EIA-J1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 1,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage $\begin{array}{c} \text{max.} \quad 15 \text{ kV} \\ \text{min.} \quad 9,5 \text{ kV} \\ \end{array}$ Grid 4 (focusing electrode) voltage $\begin{array}{c} -200 \text{ to} + 1000 \text{ V} \\ \end{array}$

Grid 2 voltage max. 700 V

Anode current

Overall length

long-term average value max. $130~\mu\text{A}$ peak value max. $600~\mu\text{A}$ Cathode voltage, positive peak value max. 400~V

Heater voltage 12 V \pm 10% * Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

Grid 4 current

CIRCUIT DESIGN VALUES

positive	max.	25	μΑ
negative	max.	25	μΑ
Grid 2 current			
positive	max.	5	μΑ
negative	max.	5	μΑ
MAXIMUM CIRCUIT VALUES			
Resistance between cathode and heater	max.	1,0	ΩM
Impedance between cathode and heater	max.	0,1	ΩM
Grid 1 circuit resistance	max.	1,5	ΩM
Grid 1 circuit impedance	max.	0,5	ΩM
TYPICAL OPERATING CONDITIONS			
Cathode drive; voltages specified with respect to grid 1			
Anode voltage	12 kV		
Grid 4 (focusing electrode) voltage	0 to 300 V*		

400 V

30 to 60 V**

Grid drive; voltages specified with respect to cathode

Anode voltage 12 kV

→ Grid 4 (focusing electrode) voltage 0 to 300 V*

Grid 2 voltage 400 V

__ Grid 1 cut-off voltage 34 to 64 V**

RESOLUTION

Grid 2 voltage

Cathode cut-off voltage

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 168 mm x 126 mm,
- at V_{q2} = 700 V and anode voltage = 12 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 168 \text{ mm} \times 126 \text{ mm}$ line parabola 200 V;

field parabola 100 V.

**Visual extinction of focused raster.

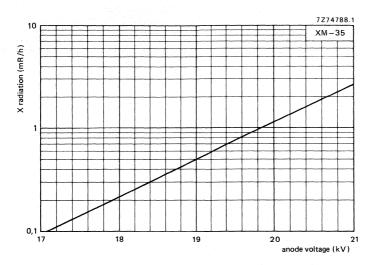


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

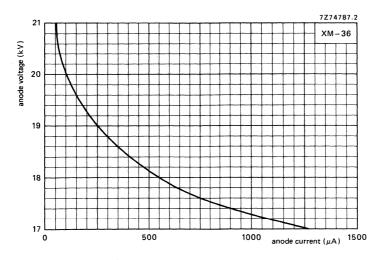


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

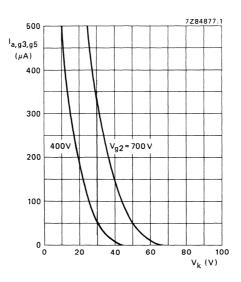


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

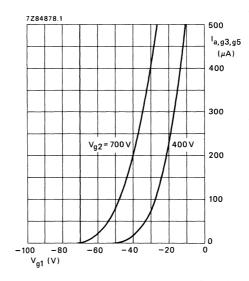


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

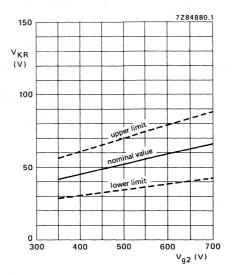


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g}3_{,g}5$ = 12 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

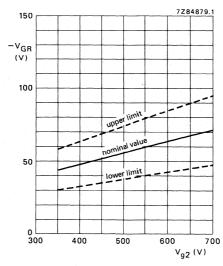


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

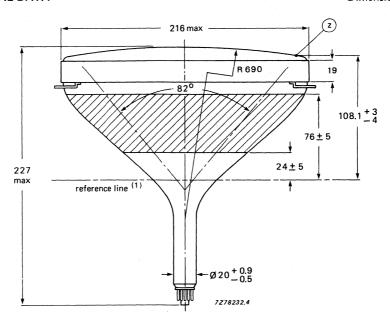


Fig. 7.

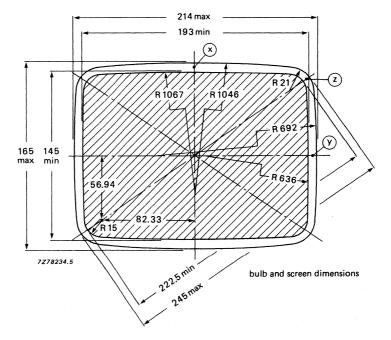


Fig. 8.

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

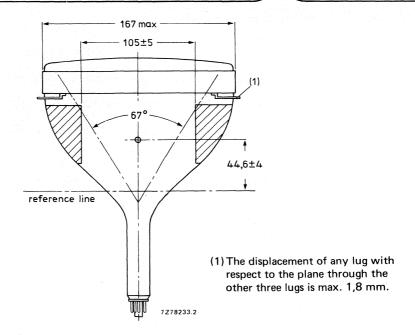


Fig. 9.

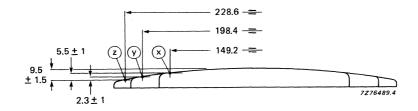


Fig. 10 Screen reference points.

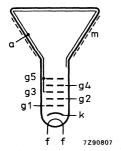


Fig. 11 Electrode configuration.

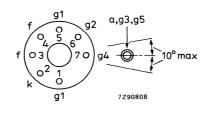


Fig. 12 Pin arrangement.

Front view and lug dimensions of tube M24-322

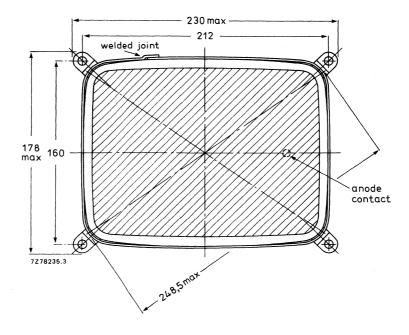


Fig. 13 Tube mounting dimensions; front view.

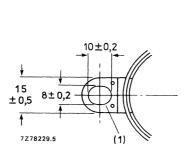


Fig. 14 Lug dimensions.

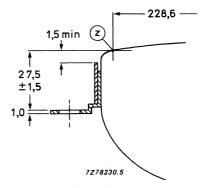


Fig. 15 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 212 mm x 160 mm.

Front view and lug dimensions of tube M24-326

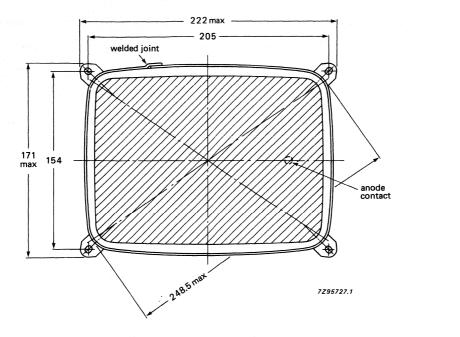


Fig. 16 Tube mounting dimensions; front view.

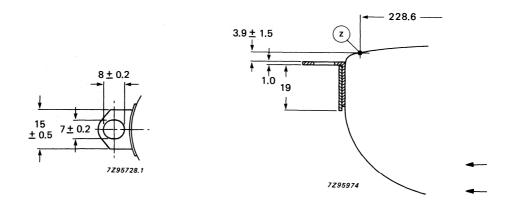


Fig. 17 Lug dimensions.

Fig. 18 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 3,4 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 205 mm x 154 mm.

Maximum cone contour

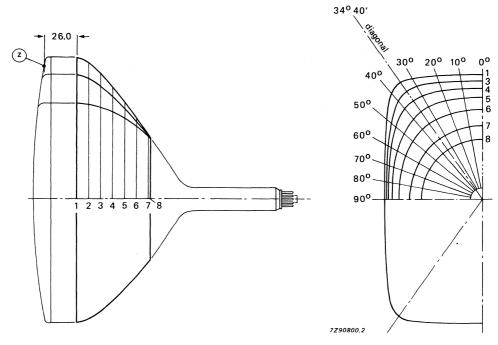


Fig. 19 Cone contour.

Table 1 Cone contour data

	nom.	max. distance from centre										
section	distance from section 1	00	100	200	300	diag.	400	50º	60º	700	800	90o
1	0	108,3	109,8	114,2	121,9	123,9	121,6	106,6	95,6	88,88	85,0	83,8
2	10	105,4	106,8	111,0	117,7	119,4	117,4	104,4	93,9	87,3	83,7	82,5
3	20	98,0	99,2	102,9	107,8	109,2	108,1	99,1	90,0	83,9	80,6	79,5
4	30	88,4	89,4	92,2	95,7	96,6	96,2	91,0	84,2	79,0	76,1	75,1
5	40	78,1	78,9	81,0	83,2	83,8	83,8	81,2	76,8	72,9	70,5	69,7
6	50	66,8	67,4	68,8	70,4	70,9	71,2	70,3	68,1	65,6	63,8	63,2
7	60	54,5	54,9	55,8	56,8	57,2	57,5	57,5	56,8	55,8	54,9	54,5
8	61,2	53,0	53,3	54,2	55,1	55,4	55,7	55,7	55,2	54,3	53,4	53,1

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 900 deflection angle
- 24 cm (9 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	24 cm (9 in)
Overall length	max. 227 mm
Neck diameter	20 mm
Heating	12 V/75 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines

APPLICATION

This high resolution tube is for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90° approx. 82° approx. 67°
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 850 pF min. 300 pF
Capacitance of external conductive coating to anode**	max. 750 pF min. 300 pF
Capacitance of anode to implosion protection hardware**	approx. 100 pF
Heater voltage	12 V
Heater current at 12 V	75 mA

OPTICAL DATA

Phosphor type	see "High resolution monochrome display tubes, General"
Light transmission at screen centre	
tube with normal tinted face glass tube with dark tinted face glass	approx. 53% approx. 42%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 227 mm

Greatest dimensions of tube

diagonal 248,5 mm width 216 mm height 167 mm

Minimum useful screen dimensions (projected)

diagonal222,5 mmhorizontal axis193 mmvertical axis145 mmarea268 cm²Implosion protectionT-band

Bulb EIAJ-JB240AA03 or

EIAJ-JB240AA04

Bulb contact designation IEC 67-III-2, EIA-J1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 1,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Grid 4 (focusing electrode) voltage -200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current		
positive	max.	25 μΑ
negative	max.	25 μΑ
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 ΜΩ
Impedance between cathode and heater	max.	0,1 ΜΩ
Grid 1 circuit resistance	max.	1,5 MΩ
Grid 1 circuit impedance	max.	0,5 ΜΩ
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage	12 kV	

0 to 300 V*

400 V 30 to 60 V**

Grid drive; voltages specified with respect to cathode

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	0 to 300 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	34 to 64 V**

RESOLUTION

Grid 2 voltage

Cathode cut-off voltage

The resolution is approx. 1300 lines. It is measured at the screen centre:

· with shrinking raster method

Grid 4 (focusing electrode) voltage

- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 168 mm x 126 mm
- at V_{a2} = 700 V and anode voltage = 12 kV
- with phosphor type W (WW)
- with normal tinted face glass, without anti-glare treatment of screen surface

X-RADIATION CHARACTERISTICS

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

- * Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.
 - **Dynamic focus** (only for optimization): Typical correction for a video field of H \times V = 168 mm \times 126 mm line parabola 200 V; field parabola 100 V.
- ** Visual extinction of focused raster.

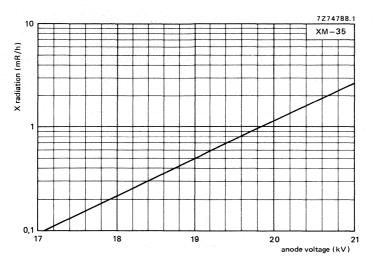


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

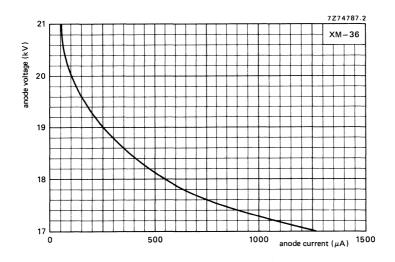


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

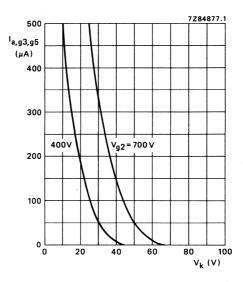


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

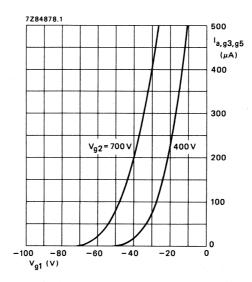


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

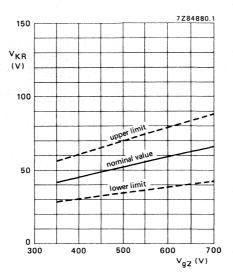


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

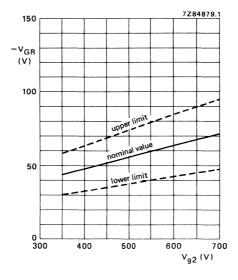
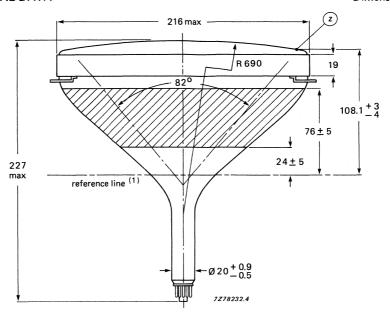



Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g}3,g5 = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

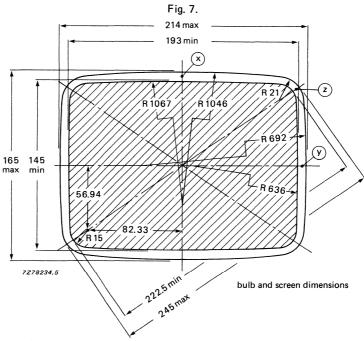


Fig. 8.

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

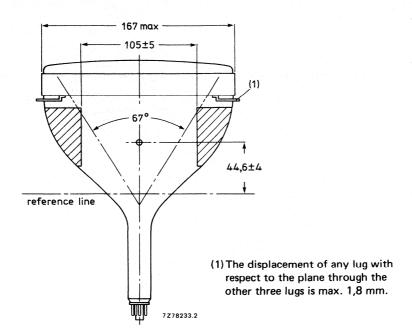


Fig. 9.

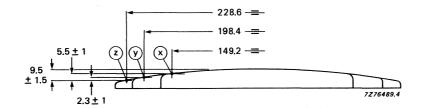


Fig. 10 Screen reference points.

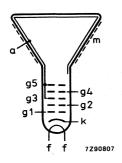


Fig. 11 Electrode configuration.

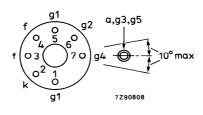


Fig. 12 Pin arrangement; bottom view.

Front view and lug dimensions

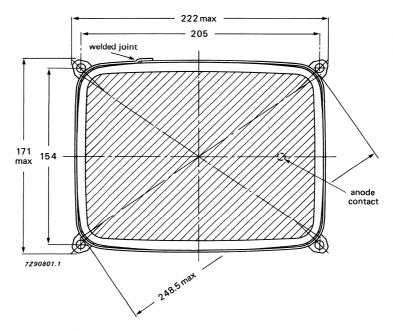


Fig. 13 Tube mounting dimensions; front view.

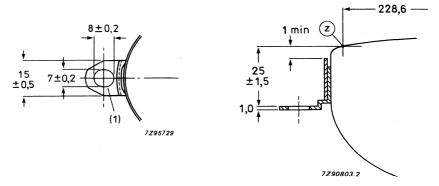


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 4 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 205 mm x 154 mm.

Maximum cone controur

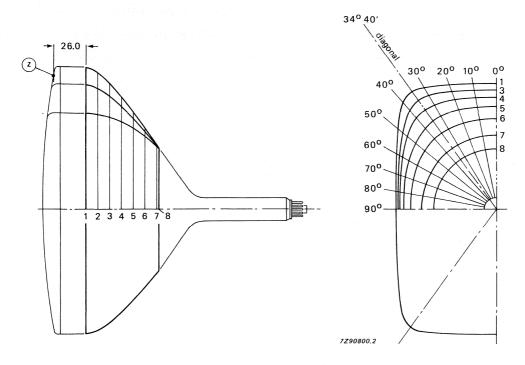


Fig. 16 Cone contour.

Table 1 Cone contour data

	nom.	max. distance from centre										
section	distance from section 1	00	100	200	300	diag.	400	5 0 0	60º	700	800	900
1	0	108,3	109,8	114,2	121,9	123,9	121,6	106,6	95,6	88,8	85,0	83,8
2	10	105,4	106,8	111,0	117,7	119,4	117,4	104,4	93,9	87,3	83,7	82,5
3	20	98,0	99,2	102,9	107,8	109,2	108,1	99,1	90,0	83,9	80,6	79,5
4	30	88,4	89,4	92,2	95,7	96,6	96,2	91,0	84,2	79,0	76,1	75,1
5	40	78,1	78,9	81,0	83,2	83,8	83,8	81,2	76,8	72,9	70,5	69,7
6	50	66,8	67,4	68,8	70,4	70,9	71,2	70,3	68,1	65,6	63,8	63,2
7	60	54,5	54,9	55,8	56,8	57,2	57,5	57,5	56,8	55,8	54,9	54,5
8	61,2	53,0	53,3	54,2	55,1	55,4	55,7	55,7	55,2	54,3	53,4	53,1

MONOCHROME DISPLAY TUBES

- 900 deflection angle
- 24 cm (9 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90o
Face diagonal	24 cm (9 in)
Overall length	max. 227 mm
Neck diameter	20 mm
Heating	11 V/140 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	130 V
Anode voltage	12 kV
Resolution	approx. 800 lines

APPLICATION

These display tubes are for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M24-511W, M24-512W and M24-514W. Differences between the tubes can be found under "Dimensional data".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90 ⁰ approx. 82 ⁰ approx. 67 ⁰
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 8 pF
Capacitance of external conductive coating to anode*	max. 850 pF min. 300 pF
Capacitance of external conductive coating to anode**	max. 750 pF min. 300 pF
Capacitance of anode to implosion protection hardware**	approx. 100 pF
Heater voltage	11 V
Heater current at 11 V	140 mA
OPTICAL DATA	
Phosphor type	W (P4)
Light transmission at screen centre	approx. 53%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensions Data)

Overall length max. 227 mm

Greatest dimensions of tube

diagonal 249,5 mm width 216 mm height 167 mm

Minimum useful screen dimensions (projected)

diagonal 222,5 mm
horizontal axis 193 mm
vertical axis 145 mm
area 268 cm²
Implosion protection T-band

Bulb EIAJ-JB240AA03
Bulb contact designation IEC 67-III-2, EIA-J1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 1,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage $\begin{array}{c} \text{max.} & 15 \text{ kV} \\ \text{min.} & 9,5 \text{ kV} \\ \end{array}$ Grid 4 (focusing electrode) voltage $\begin{array}{c} -200 \text{ to} + 500 \text{ V} \\ \text{Grid 2 voltage} \\ \text{Cathode voltage, positive peak value} \\ \text{Heater voltage} \\ \text{Cathode-to-heater voltage} \\ \end{array}$ $\begin{array}{c} \text{max.} & 200 \text{ V} \\ \text{Totology} \\ \text{Totology$

CIRCUIT DESIGN VALUES

Grid 4 current			
positive		max.	25 μΑ
negative		max.	25 μΑ
Grid 2 current			

positive max. 5 μ A negative max. 5 μ A

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater max. 1,0 M Ω Impedance between cathode and heater max. 0,1 M Ω Grid 1 circuit resistance max. 1,5 M Ω Grid 1 circuit impedance max. 0,5 M Ω

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 11 V $^{+0\%}_{-5\%}$

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	130 V*
Grid 2 voltage	130 V
Cathode cut-off voltage	45 to 65 V**

RESOLUTION

The resolution is approx. 800 lines. It is measured at the screen centre:

- with shrinking raster method.
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 168 mm x 126 mm,
- at V_{q2} = 200 V and anode voltage = 12 kV,
- with phosphor type W (WW)
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

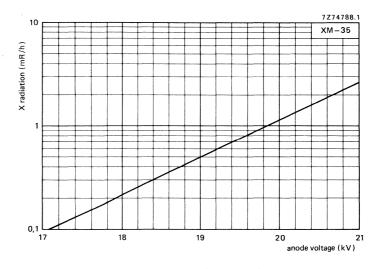


Fig. 1 X-radi-tion limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according TEPAC103A.

- Measured at screen centre on spot at anode current = 250 μA (peak), anode voltage = 12 kV, grid 2 voltage = 130 V.
 Because of the flat focus characteristic it is sufficient to choose a focusing voltage between
 - 0 V and + 130 V. The optimum focus voltage of individual tubes may be between 150 and + 50 V.
- ** Visual extinction of focused raster.

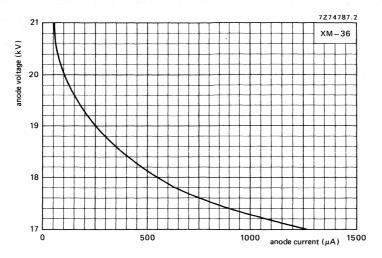


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

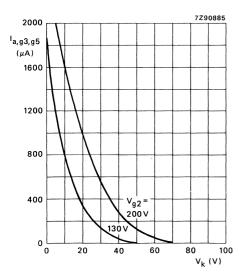


Fig. 3 Anode current as a function of cathode voltage.

Cathode drive; V_{a,g3,g5} = 12 kV.

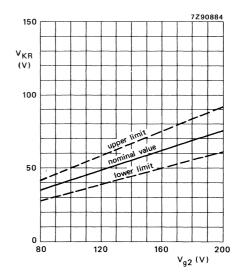


Fig. 4 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.3 \times 10^{-3}$$

DIMENSIONAL DATA

Dimensions in mm

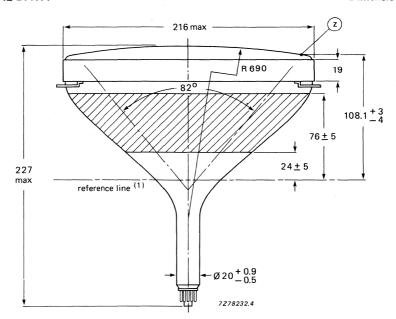


Fig. 5.

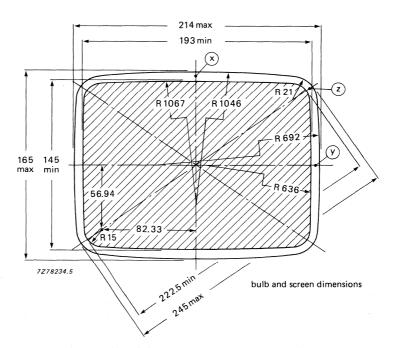


Fig. 6.

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

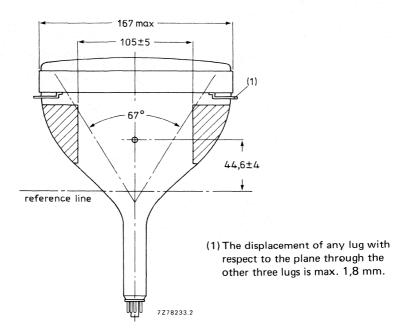
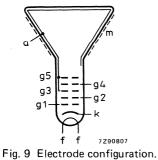



Fig. 7.

Fig. 8 Screen reference points.

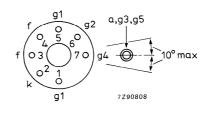


Fig. 10 Pin arrangement.

Front view of tube M24-511W

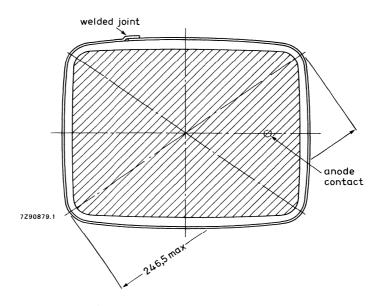


Fig. 11 Tube front view with rimband.

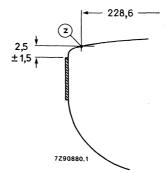


Fig. 12 Rimband position.

Front view and lug dimensions of tube M24-512W

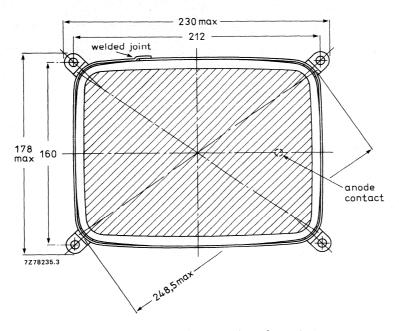


Fig. 13 Tube mounting dimensions; front view.

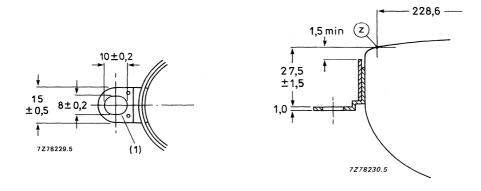


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 212 mm \times 160 mm.

Front view and lug dimensions of tube M24-514W

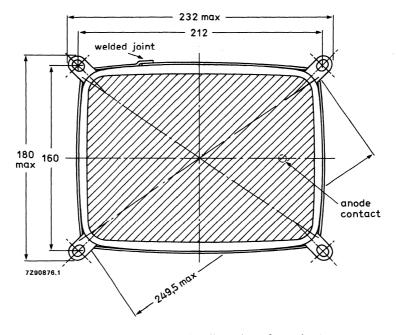


Fig. 16 Tube mounting dimensions; front view.

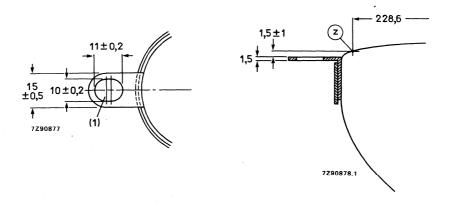


Fig. 17 Lug dimensions.

Fig. 18 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 7 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 212 mm x 160 mm.

Maximum cone contour

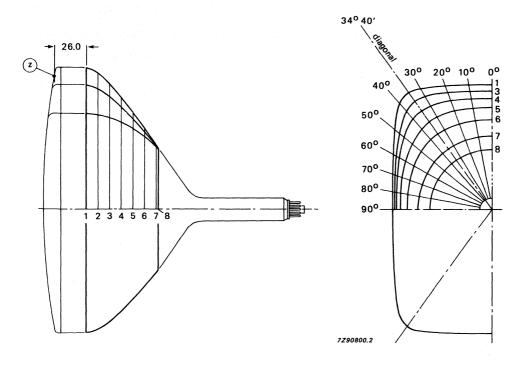


Fig. 19 Cone contour.

Table 1 Cone contour data

section	nom.	max. distance from centre										
	distance from section 1	00	100	200	300	diag.	400	500	60º	700	800	90o
1	0	108,3	109,8	114,2	121,9	123,9	121,6	106,6	95,6	88,8	85,0	83,8
2	10	105,4	106,8	111,0	117,7	119,4	117,4	104,4	93,9	87,3	83,7	82,5
3	20	98,0	99,2	102,9	107,8	109,2	108,1	99,1	90,0	83,9	80,6	79,5
4	30	88,4	89,4	92,2	95,7	96,6	96,2	91,0	84,2	79,0	76,1	75,1
5	40	78,1	78,9	81,0	83,2	83,8	83,8	81,2	76,8	72,9	70,5	69,7
6	50	66,8	67,4	68,8	70,4	70,9	71,2	70,3	68,1	65,6	63,8	63,2
7	60	54,5	54,9	55,8	56,8	57,2	57,5	57,5	56,8	55,8	54,9	54,5
8	61,2	53,0	53,3	54,2	55,1	55,4	55,7	55,7	55,2	54,3	53,4	53,1

FLAT SQUARE HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 1200 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	31 cm (12 in)
Overall length	max. 275 mm
Neck diameter	20 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines

APPLICATION

These high resolution tubes are for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M29EAA and M29EAB.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional data'.

M29EAA M29EAB

ELECTRICAL DATA

Focusing method electrostatic Deflection method magnetic Deflection angles diagonal approx. 900 horizontal approx. 790 vertical approx. 610 Interelectrode capacitances cathode to all other electrodes max. 4 pF grid 1 to all other electrodes max. 7 pF max. 1250 pF Capacitance of external conductive coating to anode* min. 800 pF Heater voltage 12 V

OPTICAL DATA

Heater current at 12 V

Phosphor type see "High resolution monochrome display tubes, General"

130 mA

Light transmission at screen centre
tube with normal tinted face glass
tube with dark tinted face glass
approx. 32%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

Implosion protection hardware connected to external conductive coating.

FLAT SQUARE

High resolution monochrome display tubes

M29EAA M29EAB

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 275 mm

Greatest dimensions of tube

 diagonal
 323,5 mm

 width
 273 mm

 height
 212,5 mm

Minimum useful screen dimensions (projected)

diagonal 294 mm
horizontal axis 246 mm
vertical axis 181 mm
area 440 cm²
Implosion protection T-band

Bulb EIAJ-JB320AA03 or

EIAJ-JB320AA04

Bulb contact designation IEC 67-III-2, EIAJ1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 3,5 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage max. 15 kV min. 10 kV

Grid 4 (focusing electrode) voltage -200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

long-term average value max. 130 μ A peak value max. 600 μ A Cathode voltage, positive peak value max. 400 V

Heater voltage $12 \text{ V} \pm 10\%$ *

Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+\,0\%}_{-5\%}$

M29EAA M29EAB

CIRCUIT DESIGN VALUES

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	max. 1,0 M Ω
Impedance between cathode and heater	max. 0,1 M Ω
Grid 1 circuit resistance	max. 1,5 M Ω
Grid 1 circuit impedance	max. 0,5 M Ω

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	0 to 300 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	30 to 60 V**

Grid drive; voltages specified with respect to cathode

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	0 to 300 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	34 to 64 V**

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 mm x 162 mm,
- at V_{a2} = 700 V and anode voltage = 12 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 250 V, field parabola 0 V.

** Visual extinction of focused raster.

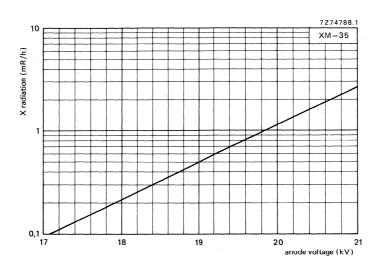


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

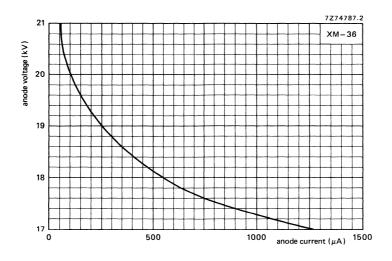


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC 94, measured according to TEPAC103A.

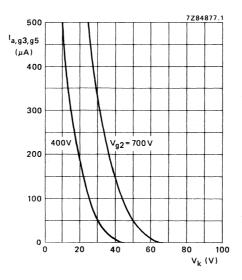


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

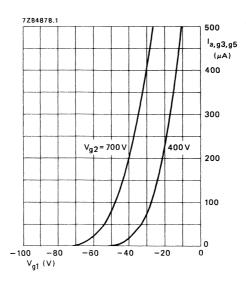


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

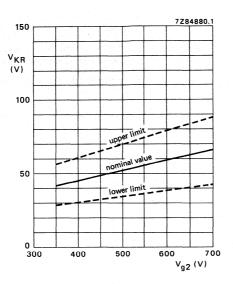


Fig. 5 Limits of cathode raster cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{\mbox{\scriptsize KR}}}{\Delta V_{\mbox{\scriptsize a},\mbox{\scriptsize g3,g5}}} = 0.9 \times 10^{-3}.$$

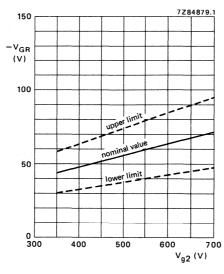


Fig. 6 Limits of grid 1 raster cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g}3,g5 = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

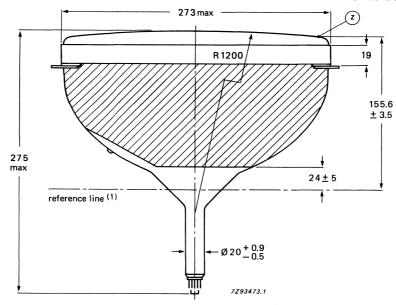
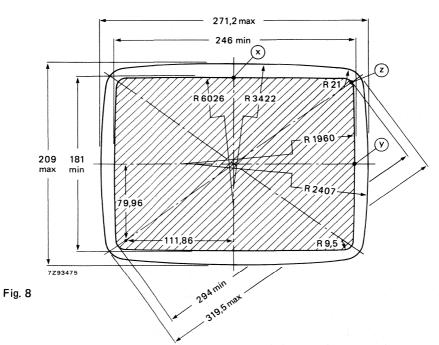
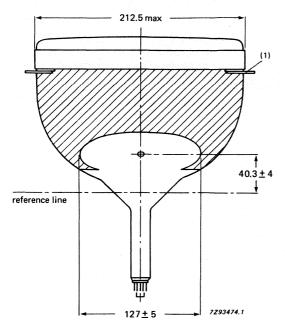




Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

(1) The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm.

Fig. 9

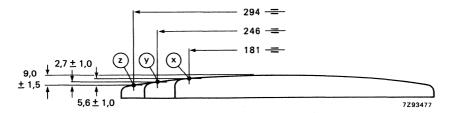


Fig. 10 Screen reference points.

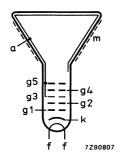


Fig. 11 Electrode configuration.

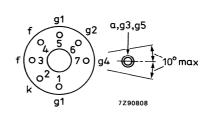


Fig. 12 Pin arrangement.

Front view of tube M29EAA

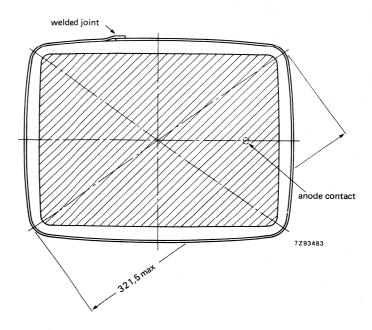


Fig. 13 Tube front view with rimband.

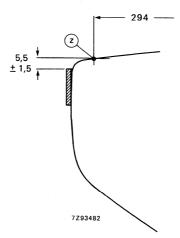


Fig. 14 Rimband position.

Front view and lug dimensions of tube M29EAB *

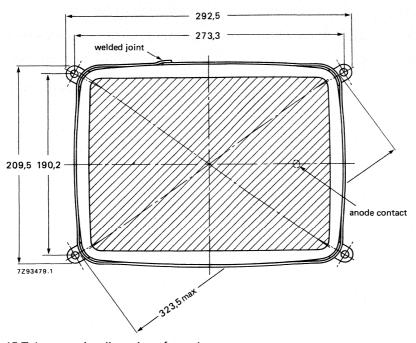


Fig. 15 Tube mounting dimensions; front view.

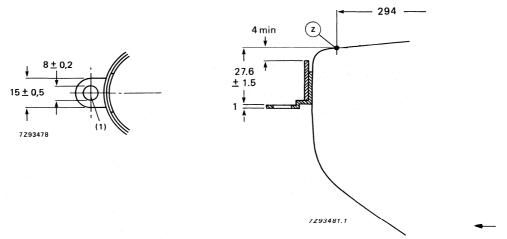


Fig. 16 Lug dimensions.

Fig. 17 Lug position.

- (1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm
- * This tube is still under development; data are provisional.

Maximum cone contour

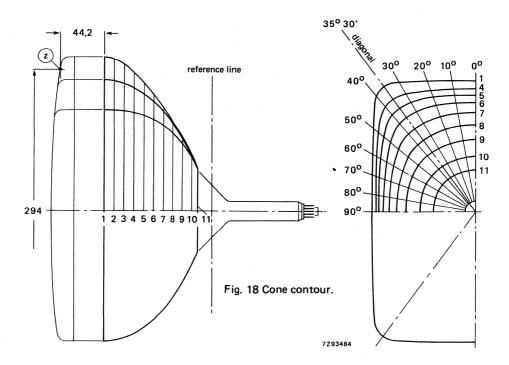


Table 1 Cone contour data

sec-	nom. distance	max. distance from centre										
tion	from section 1	00	10°	20°	30o	diag.	40°	50°	60°	70 ⁰	80°	90°
1	0	136,4	138,3	144,5	155,6	160,5	157,5	135,6	120,8	111,8	106,8	105,3
2	10	135,5	137,4	143,5	154,1	158,6	155,8	135,2	120,6	111,6	106,7	105,1
3	20	132,7	134,6	140,4	149,7	153,2	151,1	133,6	119,4	110,6	105,8	104,3
4	30	128,2	129,9	135,0	142,0	144,0	142,3	129,3	116,6	108,4	103,9	102,4
5	40	121,8	123,3	127,3	132,0	132,8	131,5	122,5	112,2	104,8	100,6	99,3
6	50	113,6	114,8	117,7	120,4	120,6	119,5	113,5	105,7	99,5	95,8	94,6
7	60	103,3	104,2	105,9	107,1	106,9	106,1	102,2	96,9	92,2	89,1	88,1
8	70	90,7	91,2	92,1	92,5	92,2	91,7	89,4	86,2	83,1	80,8	80,0
9	80	75,3	75,7	76,3	76,6	76,6	76,5	75,6	74,0	72,3	71,0	70,4
10	90	57,7	57,7	57,7	57,7	57,6	57,6	57,4	57,2	57,0	56,8	56,6
11	96,5	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7

FLAT SQUARE HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 1200 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	31 cm (12 in)
Overall length	max. 275 mm
Neck diameter	20 mm
Heating	12 V/75 mA
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines ◀

APPLICATION

These high resolution tubes are for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M29ECA and M29ECB.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional data'.

M29ECA M29ECB

ELECTRICAL DATA

Focusing method electrostatic Deflection method magnetic Deflection angles diagonal approx. 900 approx. 790 horizontal vertical approx. 610 Interelectrode capacitances cathode to all other electrodes max. 4 pF grid 1 to all other electrodes max. 7 pF max. 1250 pF Capacitance of external conductive coating to anode* min. 800 pF Heater voltage 12 V

OPTICAL DATA

Heater current at 12 V

Phosphor type see "High resolution monochrome display tubes, General"

Light transmission at screen centre tube with normal tinted face glass tube with dark tinted face glass

approx. 43% approx. 32%

75 mA

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 275 mm

Greatest dimensions of tube

 diagonal
 323,5 mm

 width
 273 mm

 height
 212,5 mm

Minimum useful screen dimensions (projected)

diagonal294 mmhorizontal axis246 mmvertical axis181 mmarea440 cm²

Implosion protection T-band

Bulb E1AJ-JB320AA03 or E1AJ-JB320AA04

Bulb contact designation IEC 67-III-2, EIAJ1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 3,5 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage max. 15 kV min. 10 kV

Grid 4 (focusing electrode) voltage -200 to + 1000 V

Grid 2 voltage max, 700 V

Anode current

long-term average value max. 130 μ A peak value max. 600 μ A

Cathode voltage, positive peak value max. 400 V

Heater voltage $12 \text{ V} \pm 10\%$ * Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$.

M29ECA M29ECB

CIRCUIT DESIGN VALUES

	CIRCUIT DESIGN VALUES	
	Grid 4 current positive negative	max. 25 μA max. 25 μA
	Grid 2 current positive negative	max. 5 μA max. 5 μA
	MAXIMUM CIRCUIT VALUES	
	Resistance between cathode and heater	max. 1,0 M Ω
	Impedance between cathode and heater	max. 0,1 M Ω
	Grid 1 circuit resistance	max. 1,5 MΩ
	Grid 1 circuit impedance	max. 0,5 M Ω
	TYPICAL OPERATING CONDITIONS	
	Cathode drive; voltages specified with respect to grid 1	
	Anode voltage	12 kV
•	Grid 4 (focusing electrode) voltage	0 to 300 V*
	Grid 2 voltage	400 V
	Cathode cut-off voltage	30 to 60 V**
	Grid drive; voltages specified with respect to cathode	
	Anode voltage	12 kV
	Grid 4 (focusing electrode) voltage	0 to 300 V*
•	Grid 2 voltage	400 V

RESOLUTION

Grid 1 cut-off voltage

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
 - at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 mm x 162 mm,
 - at $V_{q2} = 700 \text{ V}$ and anode voltage = 12 kV,
 - with phosphor type WW,
 - with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 250 V, field parabola 0 V.

34 to 64 V**

** Visual extinction of focused raster.

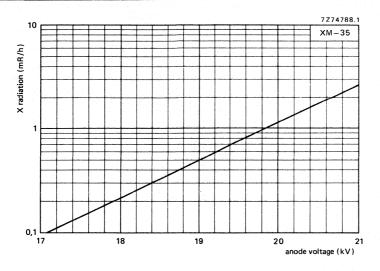


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

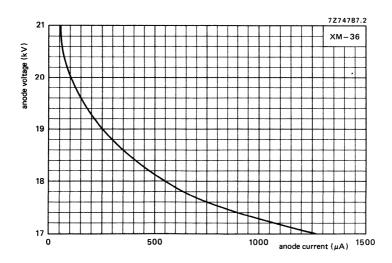


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC 94, measured according to TEPAC103A.

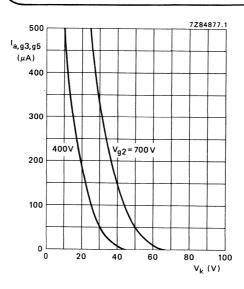


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

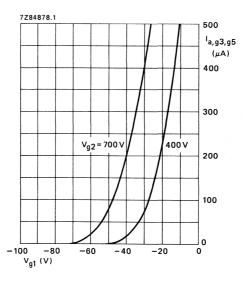


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

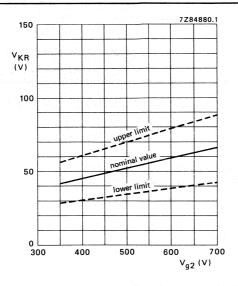


Fig. 5 Limits of cathode raster cut-off voltage as a function of grid 2 voltage. Cathode drive; V_{a,g3,g5} = 12 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

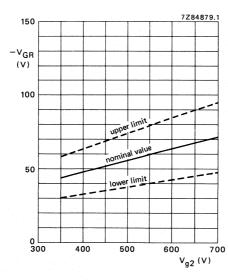


Fig. 6 Limits of grid 1 raster cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,q3,q5} = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

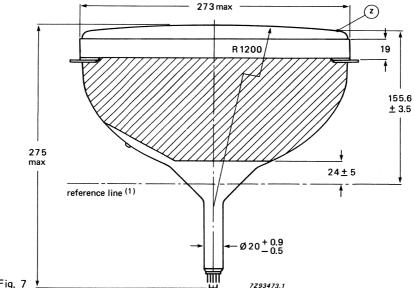
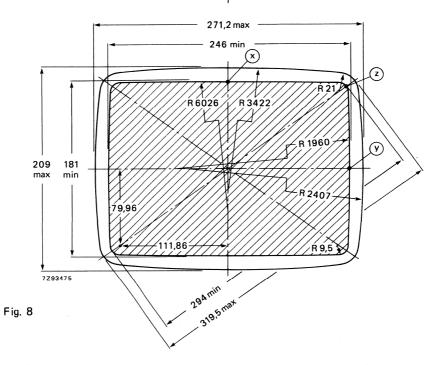
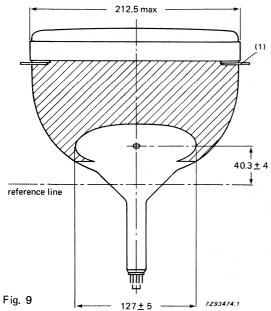




Fig. 7 7Z93473.1

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

(1) The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm.

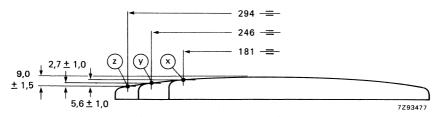


Fig. 10 Screen reference points.

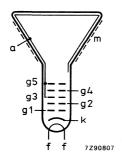


Fig. 11 Electrode configuration.

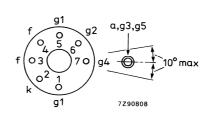


Fig. 12 Pin arrangement.

Front view of tube M29ECA

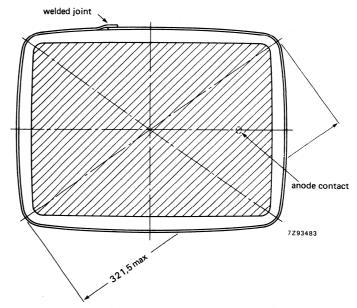


Fig. 13 Tube front view with rimband.

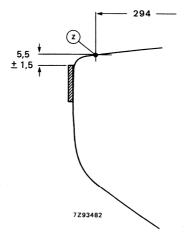


Fig. 14 Rimband position.

High resolution monochrome display tubes

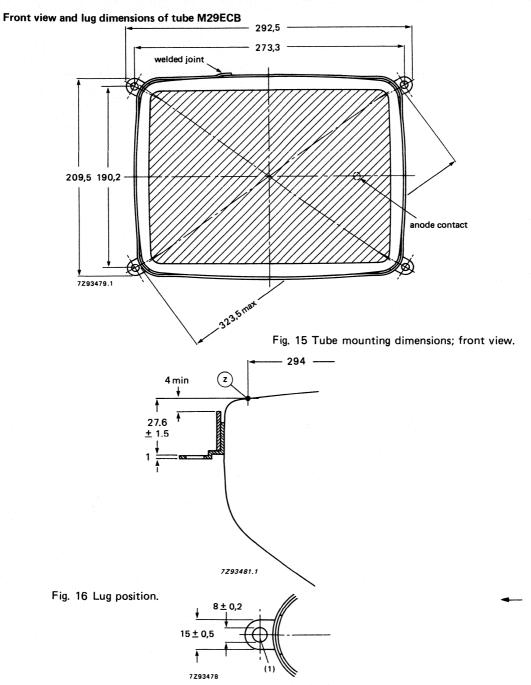


Fig. 17 Lug dimensions.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Maximum cone contour

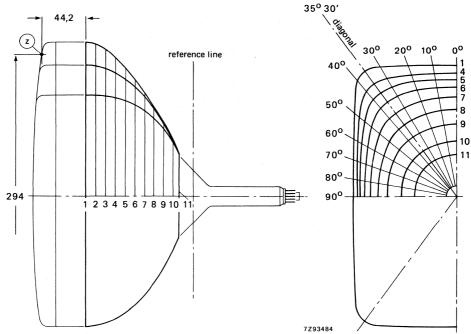


Fig. 18 Cone contour.

Table 1 Cone contour data

sec-	nom. distance	max. distance from centre										***************************************
tion	from section 1	0o	10°	20°	30°	diag.	40°	50°	60°	70 ⁰	80°	90°
1	0	136,4	138,3	144,5	155,6	160,5	157,5	135,6	120,8	111,8	106,8	105,3
2	10	135,5	137,4	143,5	154,1	158,6	155,8	135,2	120,6	111,6	106,7	105,1
3	20	132,7	134,6	140,4	149,7	153,2	151,1	133,6	119,4	110,6	105,8	104,3
4	30	128,2	129,9	135,0	142,0	144,0	142,3	129,3	116,6	108,4	103,9	102,4
5	40	121,8	123,3	127,3	132,0	132,8	131,5	122,5	112,2	104,8	100,6	99,3
6	50	113,6	114,8	117,7	120,4	120,6	119,5	113,5	105,7	99,5	95,8	94,6
7	60	103,3	104,2	105,9	107,1	106,9	106,1	102,2	96,9	92,2	89,1	88,1
8	70	90,7	91,2	92,1	92,5	92,2	91,7	89,4	86,2	83,1	80,8	80,0
9	80	75,3	75,7	76,3	76,6	76,6	76,5	75,6	74,0	72,3	71,0	70,4
10	90	57,7	57,7	57,7	57,7	57,6	57,6	57,4	57,2	57,0	56,8	56,6
11	96,5	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7	44,7

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 1100 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 3:4 screen aspect ratio
- 635 mm radius of screen curvature
- 28.6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	110°
Face diagonal	31 cm (12 in)
Overall length	max. 241 mm
Neck diameter	28,6 mm
Heating	6,3 V/240 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	17 kV
Resolution	approx. 1500 lines

APPLICATION

This high resolution tube is for alpha numeric display applications, such as computer terminals, word processors, etc.

AVAILABLE VERSIONS

The following versions are available: M31-326 and M31-370. Differences between the tubes can be found under 'Dimensional data'.

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrosta	atic
Deflection method	magnetic	
Deflection angles diagonal horizontal vertical	approx. approx. approx.	110 ⁰ 98 ⁰ 81 ⁰
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes Capacitance of external conductive coating to anode*	max. max. max.	4 pF 9 pF 900 pF
departance of external conductive coating to another	min.	450 pF
Capacitance of external conductive coating to anode**	max. min.	750 pF 450 pF
Capacitance of anode to implosion protection hardware**	approx.	150 pF
Heater voltage	6,3 V	
Heater current at 6,3 V	240 mA	

OPTICAL DATA

Phosphor type

see "High resolution monochrome display tubes, General"

Light transmission at screen centre tube with normal tinted face glass tube with dark tinted face glass

approx. 46% approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

max. 241 mm Overall length Greatest dimensions of tube 321 mm diagonal width 283 mm height 222 mm Minimum useful screen dimensions (projected) 295 mm diagonal 257 mm horizontal axis 195 mm vertical axis 478 cm² area T-band Implosion protection EIAJ-JB310AT03 or EIAJ-JB310AT04 Bulb IEC 67-III-2, EIA-J1-21 Bulb contact designation IEC 67-I-31a; EIA-B7-208 Base designation 8HR Basing Mass approx. 2,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage	max. min.	19 kV 13 kV
Grid 4 (focusing electrode) voltage	−500 to	+ 1000 V
Grid 2 voltage	max.	700 V
Anode current long-term average value peak value	max. max.	75 μA 300 μA
Cathode voltage, positive peak value	max.	400 V
Heater voltage	6,3 V ±	10%*
Cathode-to-heater voltage	max.	100 V

10 1/1/

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 6,3 V $^{+0\%}_{-5\%}$

Grid 4 current

CIRCUIT DESIGN VALUES

positive negative	max. max.	25 μΑ 25 μΑ
Grid 2 current positive negative	max. max.	5 μΑ 5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respec	et to grid 1	

Grid drive; voltages specified with respect to cathode

Anode voltage 17 kV Grid 4 (focusing electrode) voltage 0 to 400 V^* Grid 2 voltage 400 V Grid 1 cut-off voltage 45 to 83 V^{**}

RESOLUTION

Anode voltage

Grid 2 voltage

Cathode cut-off voltage

The resolution is approx. 1500 lines. It is measured at the screen centre:

with shrinking raster method,

Grid 4 (focusing electrode) voltage

- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 x 162 mm,
- at V_{q2} = 700 V and anode voltage = 17 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

17 kV

0 to 400 V*

40 to 70 V**

- * Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 17 kV, grid 2 voltage = 400 V.
 - **Dynamic focus** (only for optimization): Typical correction for a video field of H \times V = 216 mm \times 162 mm line parabola 300 V,
 - field parabola 100 V.
- ** Visual extinction of focused raster.

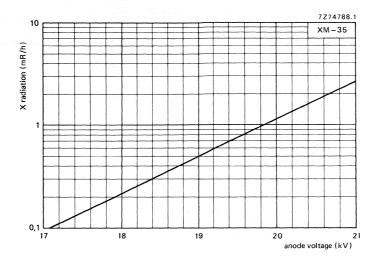


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μA, measured according to TEPAC103A.

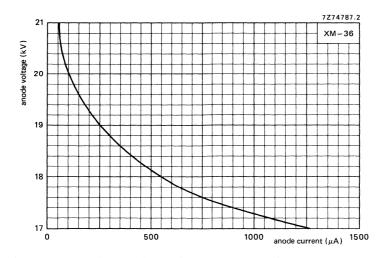


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

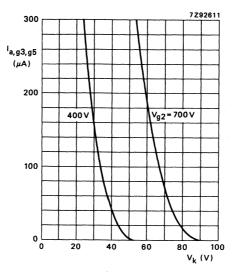


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 17 \text{ kV}$.

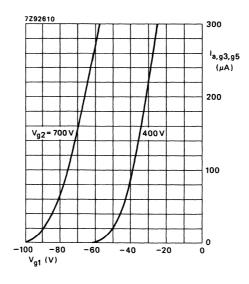


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 17 \text{ kV}$.

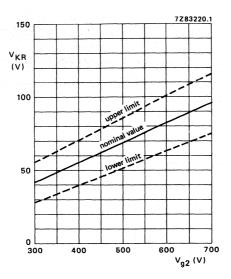


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,q3,q5} = 17 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

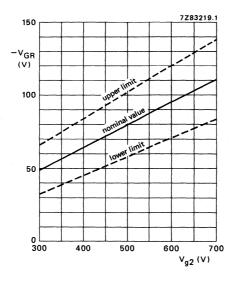


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5}$ = 17 kV.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

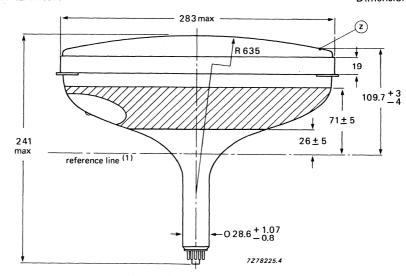
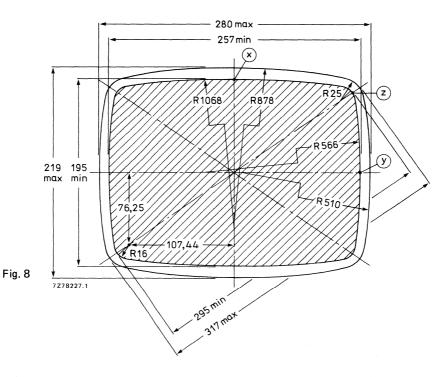



Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.

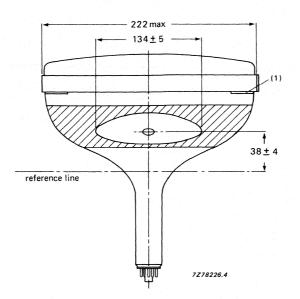


Fig. 9

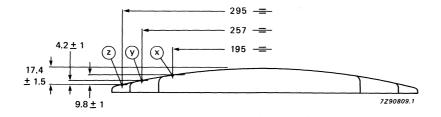


Fig. 10 Screen reference points.

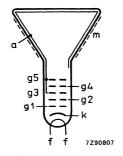
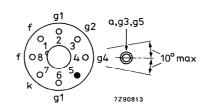
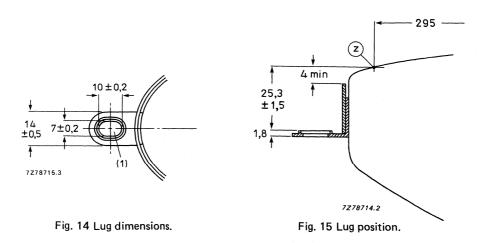


Fig. 11 Electrode configuration.




Fig. 12 Pin arrangement.

(1) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.

Front view and lug dimensions of tube M31-326

Fig. 13 Tube mounting dimensions; front view.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Front view and lug dimensions of tube M31-370 (development data)

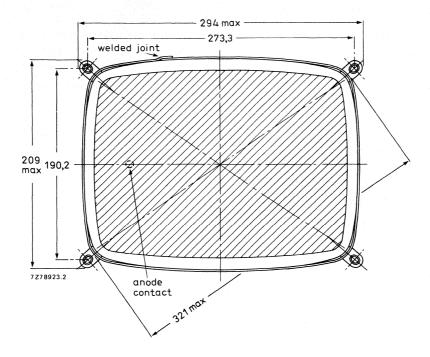


Fig. 16 Tube mounting dimensions; front view.

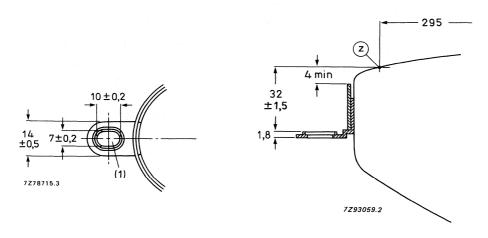


Fig. 17 Lug dimensions.

Fig. 18 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Maximum cone contour

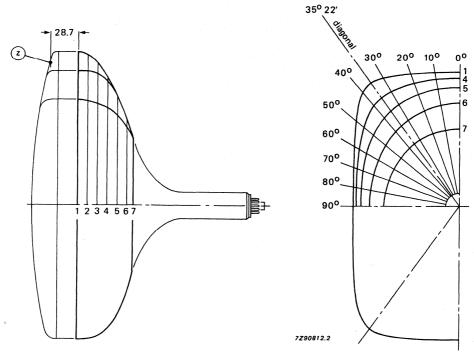


Fig. 19 Cone contour.

Table 1 Cone contour data

sec-	nom.			1	max. dis	tance fr	om cen	tre				
tion	distance from section 1	00	100	200	300	diag.	400	500	600	700	800	900
1	0	141,0	142,6	147,3	155,7	159,2	156,6	138,2	125,0	116,7	112,1	110,6
2	10	140,3	141,9	146,7	154,8	157,8	154,9	137,3	124,0	115,6	110,9	109,5
3	20	137,6	139,0	143,2	148,5	148,9	145,9	132,4	120,3	112,4	107,9	106,5
4	30	130,4	131,3	133,1	133,5	131,9	129,3	121,3	113,0	106,7	103,0	101,7
5	40	114,0	114,3	114,3	113,0	111,6	110,0	105,8	101,4	97,7	95,2	94,3
6	50	89,6	89,6	89,4	88,88	88,2	87,7	86,3	84,8	83,5	82,6	82,2
7	56,4	70,9	71,0	71,0	71,0	70,9	70,9	70,6	70,3	70,0	69,8	69,7

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 1100 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 3:4 screen aspect ratio
- 635 mm radius of screen curvature
- 28,6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	110 ^o
Face diagonal	31 cm (12 in)
Overall length	max. 241 mm
Neck diameter	28,6 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	17 kV
Resolution	approx. 1500 lines

APPLICATION

This high resolution tube is for alpha numeric and graphic display applications, such as computer terminals, word processors, etc.

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angle diagonal horizontal vertical	approx. 110 ⁰ approx. 98 ⁰ approx. 81 ⁰
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 9 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 700 pF
Heater voltage	12 V
Heater current at 12 V	130 mA

OPTICAL DATA

Phosphor type	see "High resolution monochrome display tubes, General"			
Light transmission at screen centre				
tube with normal tinted face glass	approx. 46%			
tube with dark tinted face glass	approx. 34%			

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length	max. 241 mm
Greatest dimensions of tube diagonal width height	321 mm 283 mm 222 mm
Minimum useful screen dimensions (projected) diagonal horizontal axis vertical axis area	295 mm 257 mm 195 mm 478 cm ²
Implosion protection	T-band
Bulb	EIAJ-JB310AT03 or EIAJ-JB310AT04
Bulb contact designation	IEC 67-III-2; EIA-J1-21
Base designation	IEC 67-I-31a; EIA B7-208
Basing Mass	8HR approx. 2,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage	max. min.	19 kV	
Grid 4 (focusing electrode) voltage	-500 to + 1000 V		
Grid 2 voltage	max.	700 V	
Anode current long-term average value peak value	max. max.	75 μA 300 μA	
Cathode voltage, positive peak value	max.	400 V	
Heater voltage	12 V ±	10%*	
Cathode-to-heater voltage	max.	100 V	

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current positive negative	max. max.	25 μΑ 25 μΑ
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES Resistance between cathode and heater	max.	1,0 ΜΩ
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

Anode voltage	17 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	40 to 70 V**

Grid drive; voltages specified with respect to cathode

Anode voltage	17 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	45 to 83 V**

RESOLUTION

The resolution is approx. 1500 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 x 162 mm,
- at $V_{q2} = 700 \text{ V}$ and anode voltage = 17 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 300 V, field parabola 100 V.

** Visual extinction of focused raster.

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 17 kV, grid 2 voltage = 400 V.

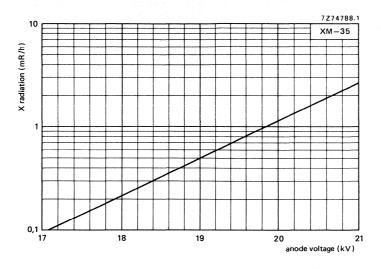


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

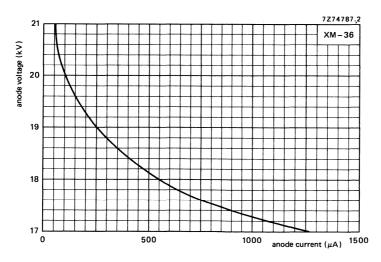


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

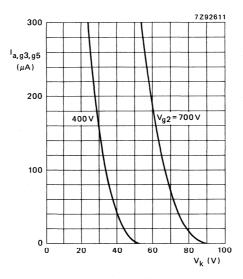


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 17 \text{ kV}$.

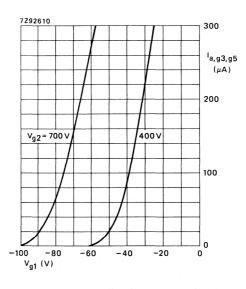


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 17 \text{ kV}$.

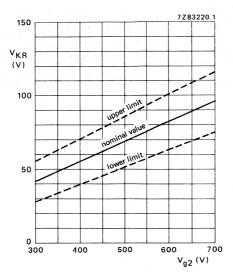
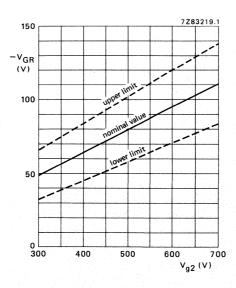
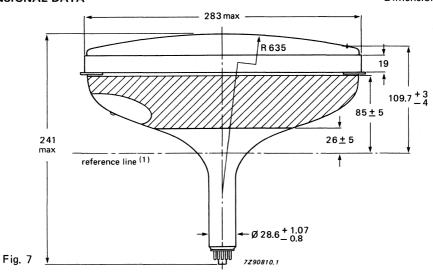
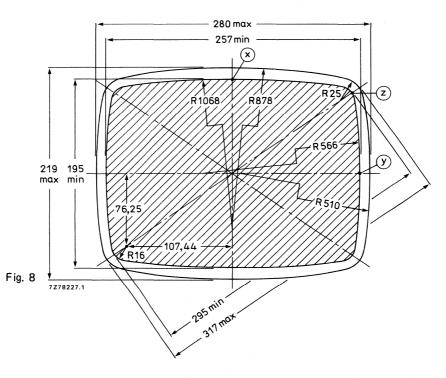


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 17 \text{ kV}$.

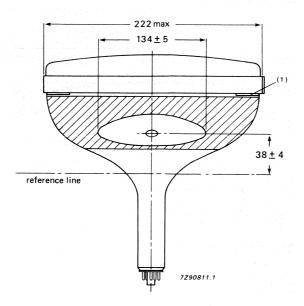
$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5}$ = 17 kV.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

DIMENSIONAL DATA


Dimensions in mm

(1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.

Fig. 9

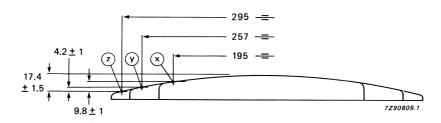


Fig. 10 Screen reference points.

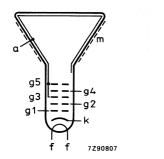


Fig. 11 Electrode configuration.

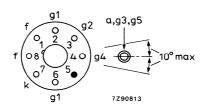


Fig. 12 Pin arrangement.

(1) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.

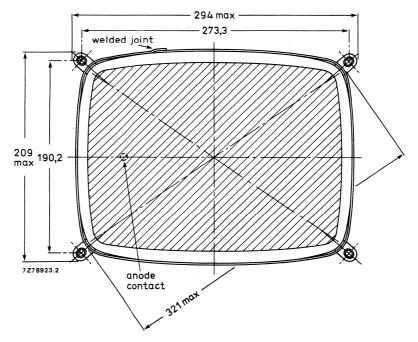


Fig. 13 Tube mounting dimensions; front view.

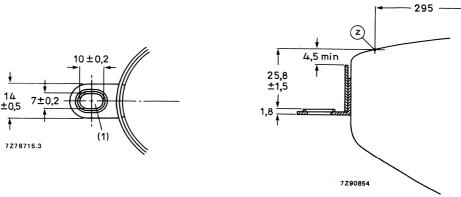


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Maximum cone contour

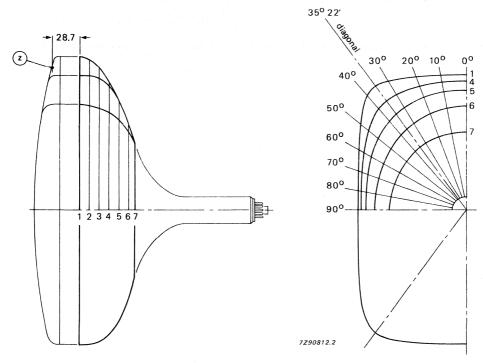


Fig. 16 Cone contour.

Table 1 Cone contour data

sec- tion	nom.	max. distance from centre										
	distance from section 1	0o	100	200	300	diag.	400	500	600	700	800	90o
1	0	141,0	142,6	147,3	155,7	159,2	156,6	138,2	125,0	116,7	112,1	110,6
2	10	140,3	141,9	146,7	154,8	157,8	154,9	137,3	124,0	115,6	110,9	109,5
3	20	137,6	139,0	143,2	148,5	148,9	145,9	132,4	120,3	112,4	107,9	106,5
4	30	130,4	131,3	133,1	133,5	131,9	129,3	121,3	113,0	106,7	103,0	101,7
5	40	114,0	114,3	114,3	113,0	111,6	110,0	105,8	101,4	97,7	95,2	94,3
6	50	89,6	89,6	89,4	88,8	88,2	87,7	86,3	84,8	83,5	82,6	82,2
7	56,4	70,9	71,0	71,0	71,0	70,9	70,9	70,6	70,3	70,0	69,8	69,7

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 4:5 screen aspect ratio
- 510 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	31 cm (12 in)
Overall length	max. 280 mm
Neck diameter	20 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines

APPLICATION

These high resolution tubes are for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M31-336, M31-338 and M31-350. Differences between the tubes can be found under 'Dimensional data'.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90° approx. 83° approx. 65°
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 1050 pF min. 450 pF
Capacitance of external conductive coating to anode**	max. 900 pF min. 450 pF
Capacitance of anode to implosion protection hardware**	approx. 150 pF
Heater voltage	12 V
Heater current at 12 V	130 mA
OPTICAL DATA	
Phosphor type	see "High resolution monochrome display tubes, General"

RASTER CENTRING

Light transmission at screen centre tube with normal tinted face glass

tube with dark tinted face glass

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

approx.

approx.

50%

34%

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length 280 mm max. Greatest dimensions of tube diagonal 315 mm width 279 mm height 227 mm Minimum useful screen dimensions (projected) 292 mm diagonal horizontal axis 254 mm vertical axis 201 mm 484 cm² area Implosion protection T-band Bulb EIAJ-JB310AM03 or EIAJ-JB310AW04 Bulb contact designation IEC 67-III-2, EIA-J1-21 Base designation **EIA E7-91** Basing 7GR Mass approx. 2,9 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage	max. min.	10 kV
Grid 4 (focusing electrode) voltage	-200 t	to + 1000 V
Grid 2 voltage	max.	700 V
Anode current long-term average value peak value	max.	130 μA 600 μA
Cathode voltage, positive peak value	max.	400 V
Heater voltage	12 V ±	10%*
Cathode-to-heater voltage	max.	100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 $V_{--5\%}^{+0\%}$.

CIRCUIT DESIGN VALUES

Grid 4 current		
positive	max.	25 μΑ
negative	max.	25 μΑ
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω

TYPICAL OPERATING CONDITIONS

Grid 1 circuit impedance

Cathode drive; voltages specified with respect to grid 1

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	0 to 300 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	30 to 60 V**

max.

 $0.5 M\Omega$

Grid drive; voltages specified with respect to cathode

Anode voltage	12 kV	
Grid 4 (focusing electrode) voltage	0 to 300 V*	ŧ
Grid 2 voltage	400 V	
Grid 1 cut-off voltage	34 to 64 V*	+ *

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 mm x 162 mm,
- at V_{q2} = 700 V and anode voltage = 12 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed o,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 200 V, field parabola 100 V.

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

^{**} Visual extinction of focused raster.

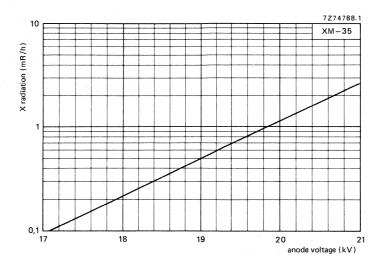


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

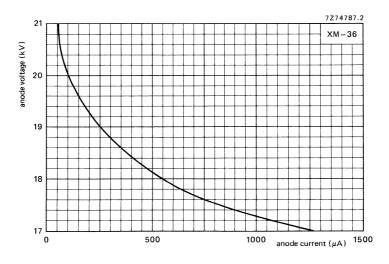


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

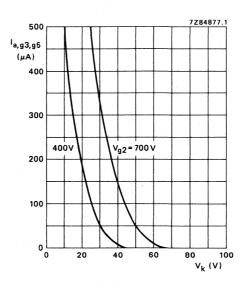


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

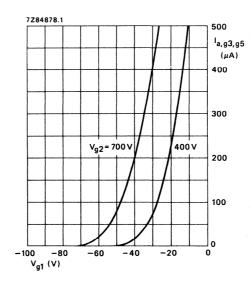


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5}$ = 12 kV.

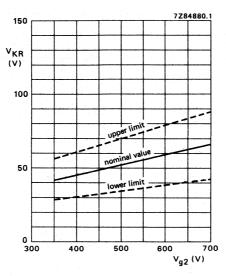


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,q3,q5} = 12 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

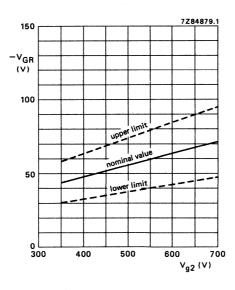
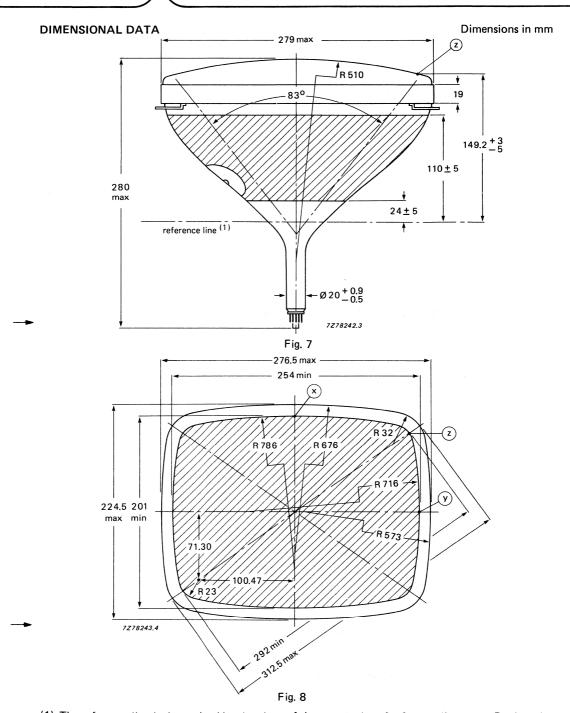



Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}$$
.

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

March 1988

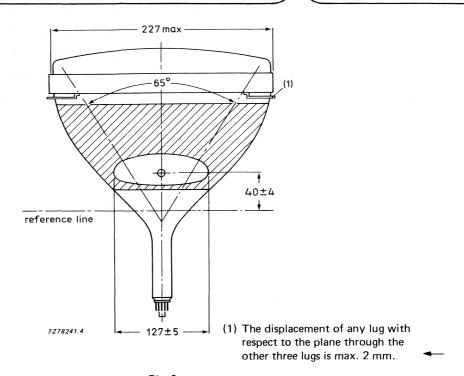


Fig. 9 292 = 254 = 22.6 ± 1.5 5.3 ± 1

Fig. 10 Screen reference points.

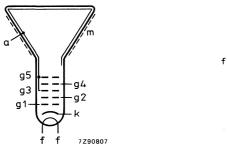


Fig. 11 Electrode configuration

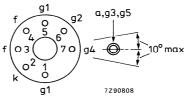


Fig. 12 Pin arrangement.

Dimensions in mm

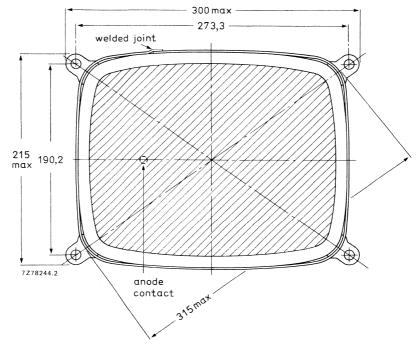


Fig. 13 Tube mounting dimensions; front view

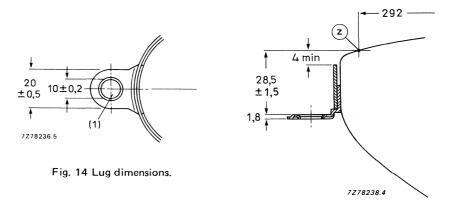


Fig. 15 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 7 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 273,3 mm x 190,2 mm.

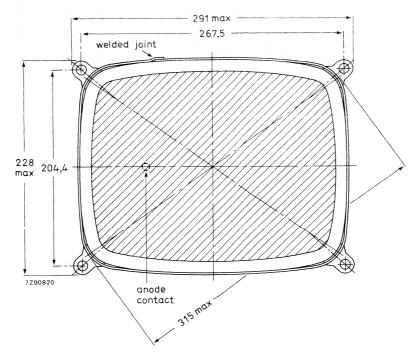


Fig. 16 Tube mounting dimensions; front view

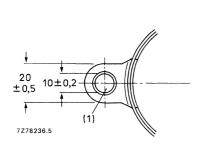


Fig. 17 Lug dimensions.

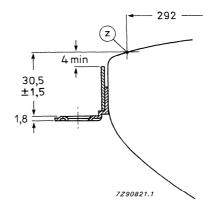


Fig. 18 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 7 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of 267,5 mm \times 204,4 mm.

Front view of tube M31-350

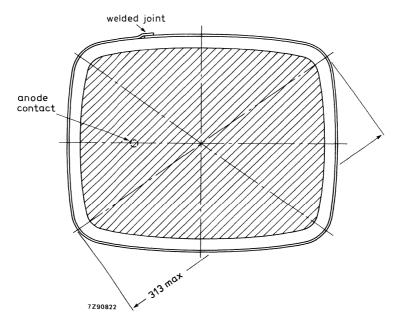


Fig. 19 Tube front view with rimband.

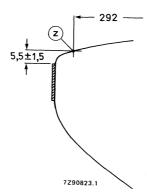


Fig. 20 Rimband position.

Maximum cone contour

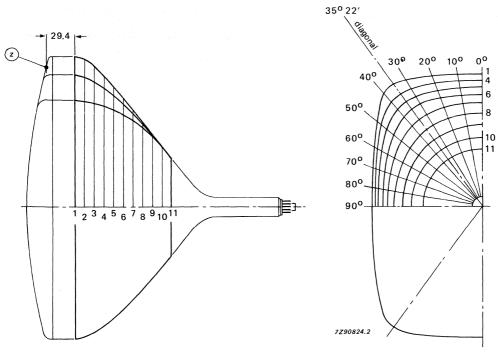


Fig. 21 Cone contour.

Table 1 Cone contour data

000	nom.		max. distance from centre									
sec- tion	distance from section 1	0o	100	200	300	diag.	400	500	60º	700	80o	900
1	0	138,3	139,9	145,0	153,9	156,6	154,7	138,9	126,3	118,2	113,7	112,3
2	10	136,5	138,1	143,2	151,5	154,4	152,6	137,5	125,0	116,9	112,4	110,9
3	20	131,8	133,4	138,1	145,1	147,5	146,2	133,8	122,1	114,3	110,0	108,6
4	30	125,2	126,6	130,6	136,0	137,5	136,6	127,9	117,8	110,7	106,6	105,3
5	40	117,0	118,2	121,3	124,8	125,6	125,0	119,6	112,1	106,1	102,5	101,3
6	50	107,9	108,8	111,0	113,1	113,5	113,2	110,2	105,2	100,6	97,6	96,6
7	60	98,1	98,7	100,0	101,1	101,3	101,2	99,8	97,2	94,3	92,0	91,2
8	70	87,7	88,0	88,5	89,0	89,1	89,1	88,88	87,9	86,6	85,5	84,9
9	80	76,6	76,5	76,5	76,6	76,8	76,9	77,1	77,3	77,4	77,3	77,2
10	90	64,6	64,4	64,1	64,1	64,2	64,3	64,8	65,5	66,3	66,9	67,3
11	99	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 3: 4 screen aspect ratio
- 635 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

900
31 cm (12 in)
max. 277 mm
20 mm
12 V/130 mA
with a typical tube a legible picture will appear within 5 s
400 V
12 kV
approx. 1300 lines

APPLICATION

These high resolution tubes are for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M31-340, M31-342, M31-344, M31346 and M31-348.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional data'.

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90 ^o approx. 78 ^o approx. 61 ^o
Interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 450 pF
Capacitance of external conductive coating to anode**	max. 1050 pF min. 450 pF
Capacitance of anode to implosion protection hardware**	approx. 150 pF
Heater voltage	12 V
Heater current at 12 V	130 mA
OPTICAL DATA	

Phosphor type	see ''High resolution monochrome display tubes, General''
Light transmission at screen centre	
tube with normal tinted face glass	approx. 46%
tube with dark tinted face glass	approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 277 mm

Greatest dimensions of tube

diagonal 321 mm width 283 mm height 222 mm

Minimum useful screen diremsions (projected)

diagonal 295 mm
horizontal axis 257 mm
vertical axis 195 mm
area 478 cm²
Implosion protection T-band

Bulb EIAJ-JB310AP03 or

EIAJ-JB310AP04

Bulb contact designation IEC 67-III-2, EIAJ1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 2,9 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage max. 15 kV min. 10 kV

Grid 4 (focusing electrode) voltage —200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

long-term average value max. 130 μ A peak value max. 600 μ A Cathode voltage, positive peak value max. 400 V Heater voltage 12 V \pm 10%* Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current positive negative	max. 25 μA max. 25 μA
Grid 2 current positive negative	max. 5 μA max. 5 μA

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	max. 1,0 M Ω
Impedance between cathode and heater	max. 0,1 M Ω
Grid 1 circuit resistance	max. 1,5 MΩ
Grid 1 circuit impedance	max. 0,5 M Ω

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	0 to 300 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	30 to 60 V**

Grid drive; voltages specified with respect to cathode

Anode voltage	12 kV
Grid 4 (focusing electrode) voltage	0 to 300 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	34 to 64 V**

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 x 162 mm.
- at V_{q2} = 700 V and anode voltage = 12 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 200 V, field parabola 100 V.

** Visual extinction of focused raster.

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

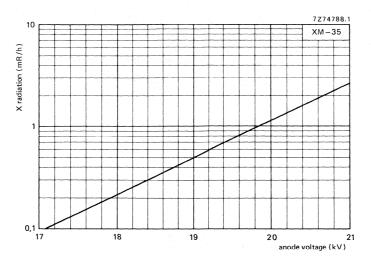


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

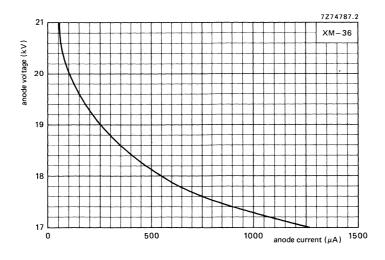


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

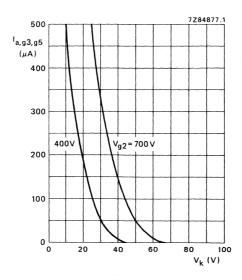


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

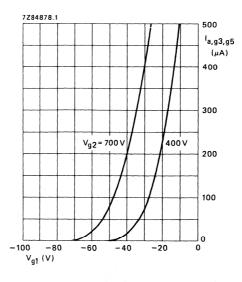


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

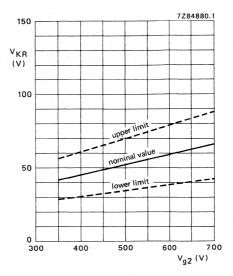


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g}3,g5} = 0.9 \times 10^{-3}.$$

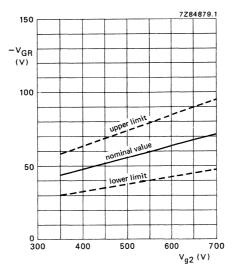


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

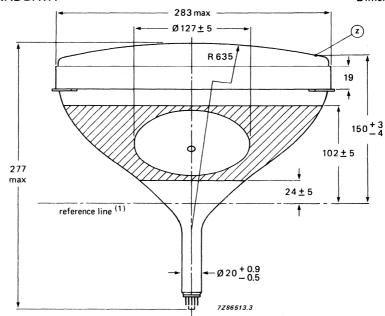
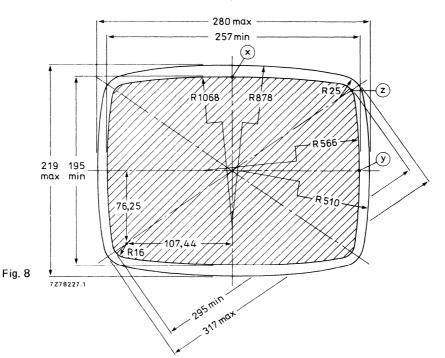
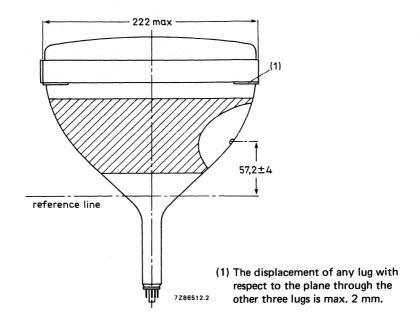




Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

Fig. 9

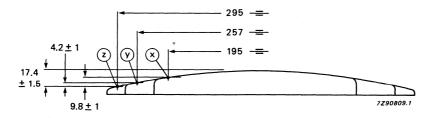


Fig. 10 Screen reference points.

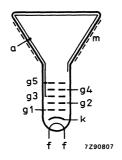


Fig. 11 Electrode configuration.

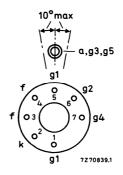


Fig. 12 Pin arrangement.

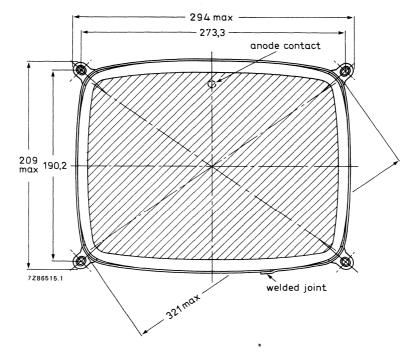


Fig. 13 Tube mounting dimensions; front view.

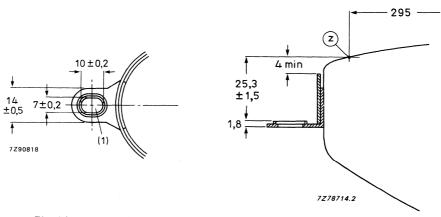


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

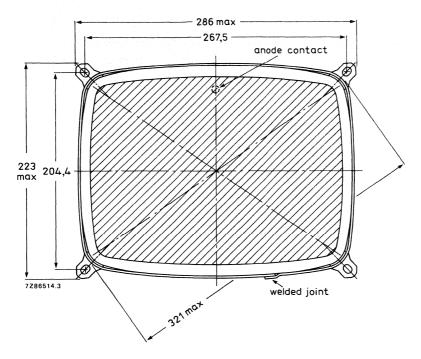
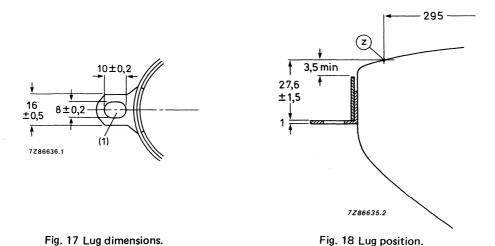



Fig. 16 Tube mounting dimensions; front view.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 267,5 mm x 204,4 mm.

Front view of tube M31-344

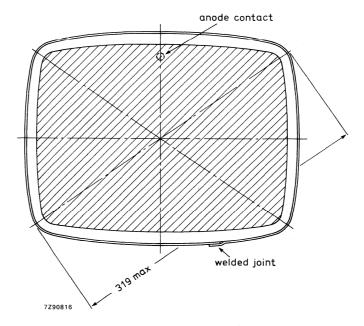


Fig. 19 Tube front view with rimband.

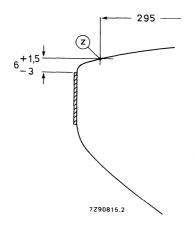


Fig. 20 Rimband position.

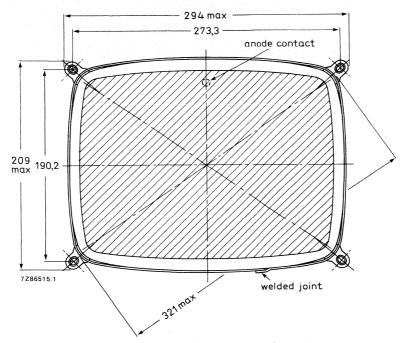


Fig. 21 Tube mounting dimensions; front view.

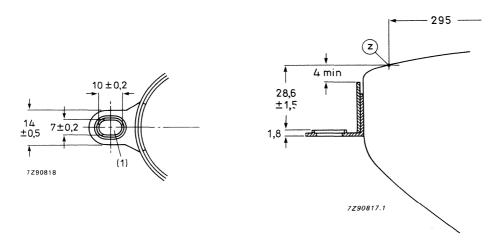


Fig. 22 Lug dimensions.

Fig. 23 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

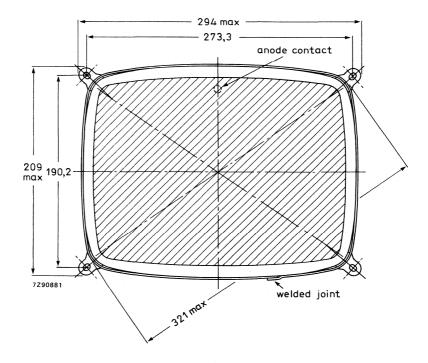
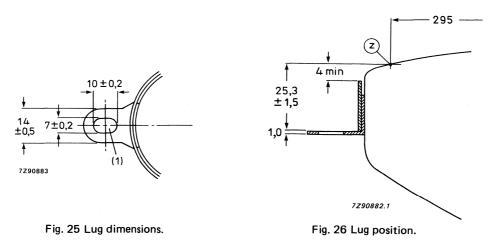



Fig. 24 Tube mounting dimensions; front view.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

00

8

10

Maximum cone contour

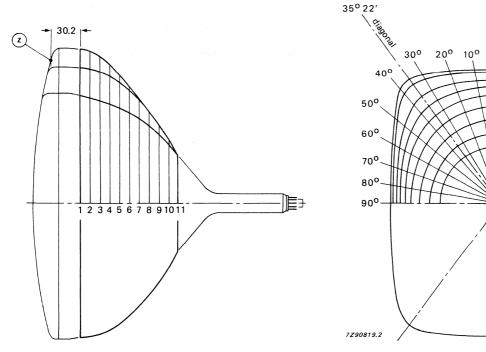


Fig. 27 Cone contour.

Table 1 Cone contour data

sec-	nom.											
tion	distance from section 1	00	100	200	300	diag.	400	500	60º	700	800	900
1	0	140,6	142,4	147,9	156,8	160,4	156,9	139,3	126,1	117,5	112,7	111,2
2	10	139,8	141,6	147,0	155,5	158,5	154,4	136,8	123,7	115,2	110,5	109,0
3	20	137,8	139,4	144,4	151,9	153,6	149,5	133,0	120,4	112,3	107,8	106,4
4	30	133,5	135,0	139,3	144,8	145,1	141,6	127,7	116,3	108,7	104,5	103,1
5	40	126,9	128,1	131,3	134,2	133,6	130,9	120,7	110,9	104,2	100,4	99,1
6	50	117,9	118,8	120,9	122,1	121,1	119,2	112,1	104,5	98,7	95,3	94,2
7	60	107,2	107,9	109,1	109,3	108,5	107,1	102,3	96,8	92,1	89,1	88,1
8	70	95,5	95,9	96,4	96,0	95,2	94,2	91,2	87,5	84,1	81,8	80,9
9	80	82,4	82,5	82,4	81,8	81,2	80,5	78,7	76,6	74,5	73,0	72,4
10	90	67,5	67,5	67,2	66,6	66,3	65,9	65,0	64,1	63,2	62,5	62,2
11	99	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 90° deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 4:5 screen aspect ratio
- 510 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

90°
31 cm (12 in)
max. 280 mm
20 mm
12 V/75 mA
400 V
12 kV
approx. 1300 lines

APPLICATION

This high resolution tube is for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

ı	Focusing method	electrostatic
[Deflection method	magnetic
	Deflection angles diagonal horizontal vertical	approx. 90° approx. 83° approx. 65°
- -[Direct interelectrode capacitances	
	cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
(Capacitance of external conductive coating to anode*	max. 1050 pF min. 450 pF
(Capacitance of external conductive coating to anode**	max. 900 pF min. 450 pF
(Capacitance of anode to implosion protection hardware**	approx. 150 pF
1	Heater voltage	12 V
١	Heater current at 12 V	75 mA
. (OPTICAL DATA	
F	Phosphor type	see "High resolution monochrome display tubes, General"

RASTER CENTRING

Light transmission at screen centre tube with normal tinted face glass

tube with dark tinted face glass

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

approx.

approx. 34%

50%

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

280 mm

MECHANICAL DATA (see also the figures under Dimensional Data)

Greatest dimensions of tube diagonal 315 mm

width 279 mm height 227 mm

Minimum useful screen dimensions (projected)

diagonal292 mmhorizontal axis254 mmvertical axis201 mmarea484 cm²Implosion protectionT-band

Bulb EIAJ-JB310AM03 or EIAJ-JB310AW04

Bulb contact designation IEC67-III-2, EIAJ1-21

Base designation EIA E7-91
Basing 7GR

Mass approx. 2,9 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage min. 10 kV

Grid 4 (focusing electrode) voltage —200 to + 1000 V

Grid 2 voltage max. 700 V ←

max.

15 kV

Anode current

Overall length

Heater voltage 12 V \pm 10%*

Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$.

CIRCUIT DESIGN VALUES

Cold A comment		
Grid 4 current positive negative	max. max.	25 μΑ 25 μΑ
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

	Anode voltage		12 kV
-	Grid 4 (focusing electrode) voltage		0 to 300 V*
	Grid 2 voltage		400 V
-	Cathode cut-off voltage		30 to 60 V**
	Grid drive; voltages specified with respect to	cathode	

Anode voltage

Grid 4 (focusing electrode) voltage 0 to 300 V* 400 V Grid 2 voltage

34 to 64 V** Grid 1 cut-off voltage

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- · with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 x 162 mm,
- at $V_{q2} = 700 \text{ V}$ and anode voltage = 12kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 200 V,

12 kV

field parabola 100 V.

** Visual extinction of focused raster.

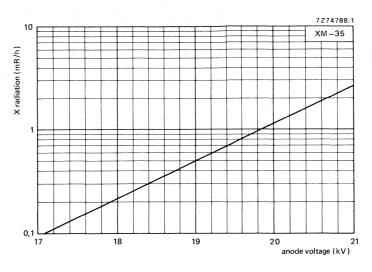


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

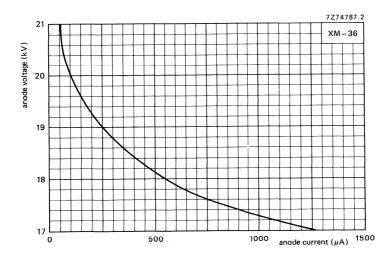


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

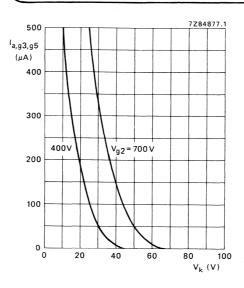


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

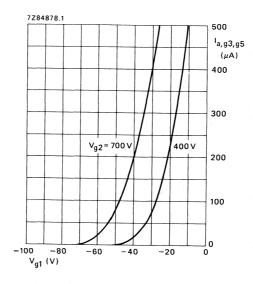


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

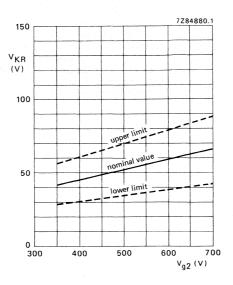


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

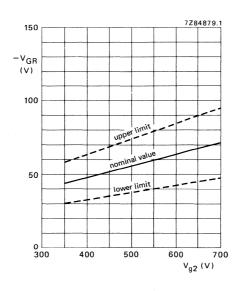


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5}$ = 12 kV.

$$\frac{\Delta V_{\mbox{GR}}}{\Delta V_{\mbox{a},\mbox{g3},\mbox{g5}}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

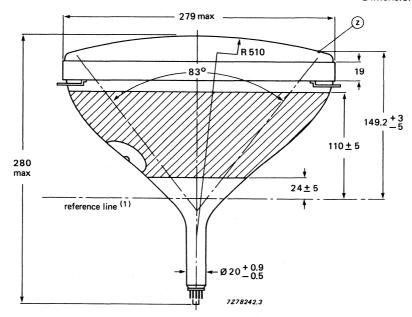
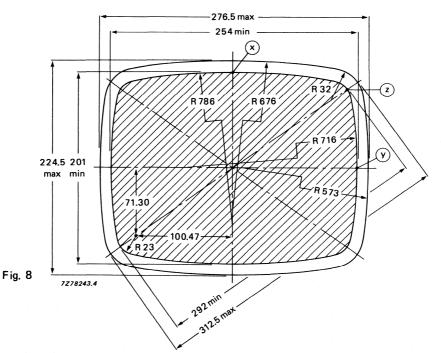
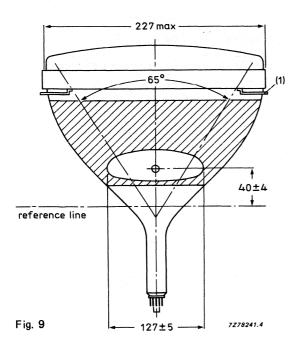




Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

(1) The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm.

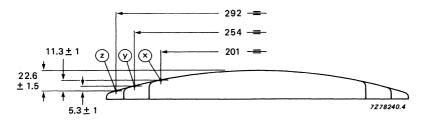


Fig. 10 Sceen reference points.

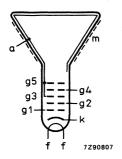


Fig. 11 Electrode configuration.

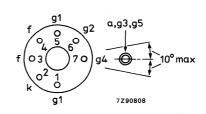


Fig. 12 Pin arrangement.

Front-view and lug dimensions of tube

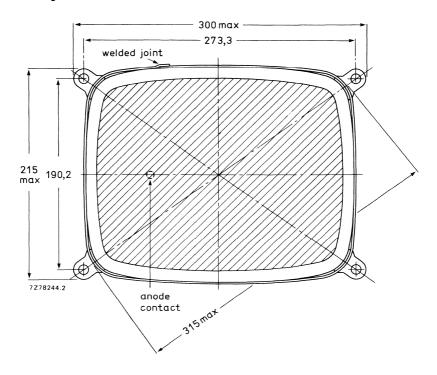


Fig. 13 Tube mounting dimensions; front view.

Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The position of the mounting screws in the cabinet must be within a circle of 7 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 273,3 mm x 190,2 mm.

Maximum cone contour

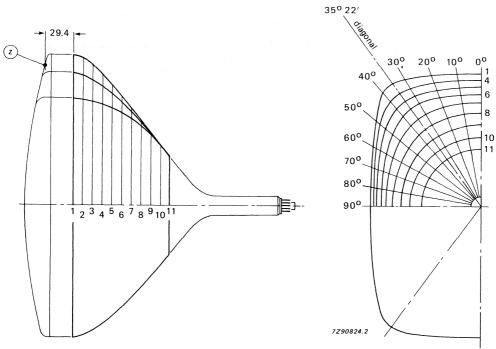


Fig. 16 Cone contour.

Table 1 Cone contour data

sec-	nom.	max. distance from centre										
tion	distance from section 1	00	100	200	300	diag.	400	500	60º	700	800	90o
1	0	138,3	139,9	145,0	153,9	156,6	154,7	138,9	126,3	118,2	113,7	112,3
2	10	136,5	138,1	143,2	151,5	154,4	152,6	137,5	125,0	116,9	112,4	110,9
3	20	131,8	133,4	138,1	145,1	147,5	146,2	133,8	122,1	114,3	110,0	108,6
4	30	125,2	126,6	130,6	136,0	137,5	136,6	127,9	117,8	110,7	106,6	105,3
5	40	117,0	118,2	121,3	124,8	125,6	125,0	119,6	112,1	106,1	102,5	101,3
6	50	107,9	108,8	111,0	113,1	113,5	113,2	110,2	105,2	100,6	97,6	96,6
7	60	98,1	98,7	100,0	101,1	101,3	101,2	99,8	97,2	94,3	92,0	91,2
8	70	87,7	88,0	88,5	89,0	89,1	89,1	88,8	87,9	86,6	85,5	84,9
9	80	76,6	76,5	76,5	76,6	76,8	76,9	77,1	77,3	77,4	77,3	77,2
10	90	64,6	64,4	64,1	64,1	64,2	64,3	64,8	65,5	66,3	66,9	67,3
11	99	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1	51,1

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 3:4 screen aspect ratio
- 635 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

900
31 cm (12 in)
max. 277 mm
20 mm
12 V/75 mA
400 V
12 kV
approx. 1300 lines

APPLICATION

These high resolution tubes are for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M31-362, M31-364 and M31-366.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional Data'.

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90 ⁰ approx. 78 ⁰ approx. 61 ⁰
Interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 450 pF
Capacitance of external conductive coating to anode**	max. 1050 pF min. 450 pF
Capacitance of anode to implosion protective hardware**	approx. 150 pF
Heater voltage	12 V
Heater current at 12 V	75 mA
OPTICAL DATA	

Phosphor type

see "High resolution monochrome

display tubes, General"

Light transmission at screen centre tube with normal tinted face glass tube with dark tinted face glass

approx. 46% approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (See also the figures under Dimensional Data)

max. 277 mm Overall length Greatest dimensions of tube

321 mm diagonal 283 mm width height 222 mm

Minimum useful screen dimensions (projected)

295 mm diagonal horizontal axis 257 mm vertical axis 195 mm 478 cm² area T-band Implosion protection

EIAJ-JB310AP03 or Bulb

EIAJ-JB310AP04

IEC 67-III-2, EIA-J1-21 Bulb contact designation

EIA E7-91 Base designation 7GR Basing

approx. 2,9 kg Mass

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

max. 15 kV Anode voltage min. 10 kV -200 to +1000 V Grid 4 (focusing electrode) voltage

700 V max. Grid 2 voltage

Anode current

long-term average value max. 130 µA max. 160 µA peak value 400 V Cathode voltage, positive peak value max.

12 V ± 10%* Heater voltage

100 V max. Cathode-to-heater voltage

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V

CIRCUIT DESIGN VALUES

positive negative	max. max.	25 μA 25 μA
Grid 2 current		Γ
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXUMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 ΜΩ
Grid 1 circuit impedance	max.	0,5 ΜΩ

TYPICAL OPERATING CONDITIONS

	Cathode drive; voltages specified with respect to grid 1	
	Anode voltage	12 kV
-	Grid 4 (focusing electrode) voltage	0 to 300 V*
	Grid 2 voltage	400 V
-	Cathode cut-off voltage	30 to 60 V**
	Grid drive; voltages specified with respect to cathode	
	Anode voltage	12 kV
-	Grid 4 (focusing electrode) voltage	0 to 300 V*
	Grid 2 voltage	400 V
	Grid 1 cut-off voltage	34 to 64 V**

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- ullet at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 x 162 mm,
- at V_{q2} = 700 V and anode voltage = 12 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTICS

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of H x V = 216 mm x 162 mm: line parabola 200 V, field parabola 100 V.

** Visual extinction of focused raster.

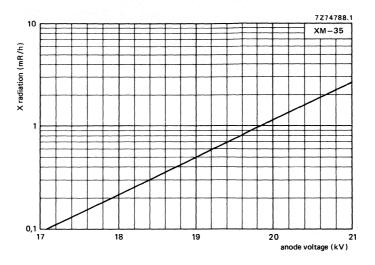


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

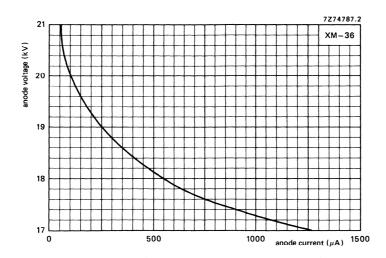


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

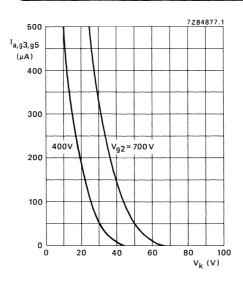


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

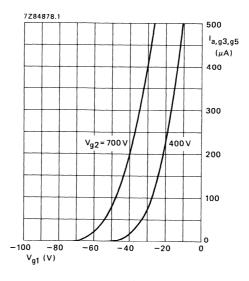


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

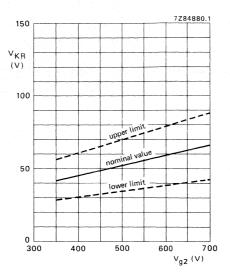


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,q3,q5} = 12 \text{ kV}$.

$$\frac{\Delta V_{\mbox{\scriptsize KR}}}{\Delta V_{\mbox{\scriptsize a},\mbox{\scriptsize g3,g5}}} = 0.9 \times 10^{-3}. \label{eq:constraint}$$

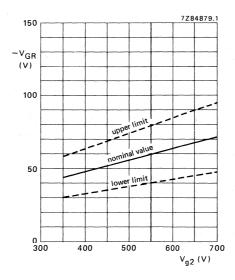


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,q3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

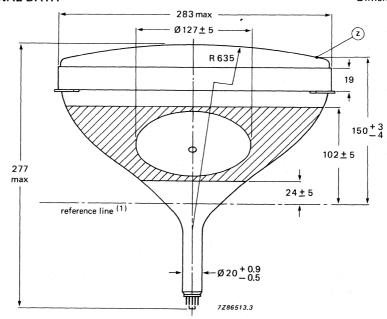
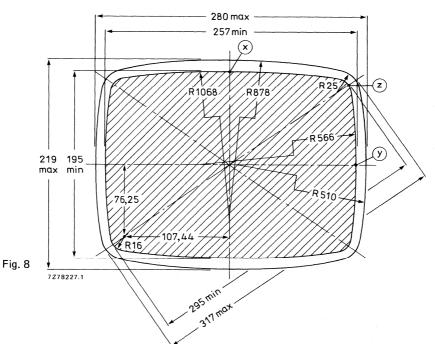



Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

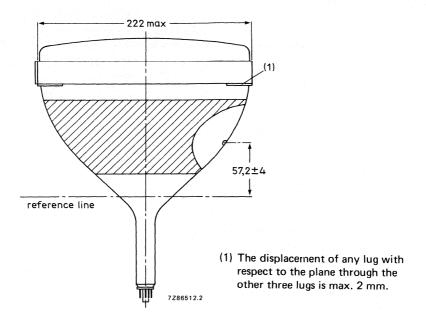


Fig. 9

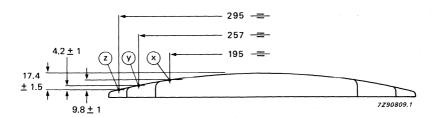


Fig. 10 Screen reference points.

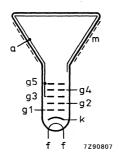


Fig. 11 Electrode configuration.

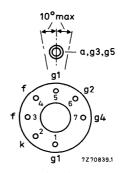


Fig. 12 Pin arrangement.

Front view and lug dimensions of tube M31-362

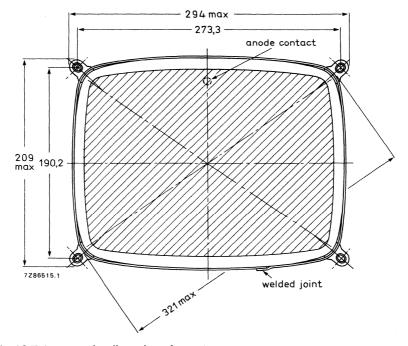


Fig. 13 Tube mounting dimensions; front view.

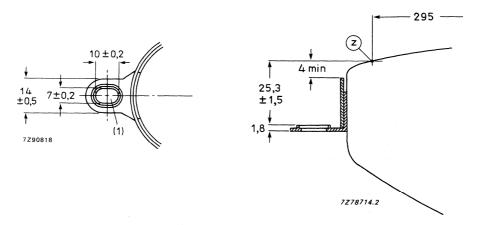


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Front view and lug dimensions of tube M31-364

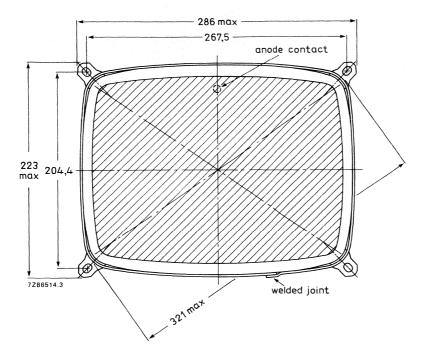


Fig. 16 Tube mounting dimensions; front view.

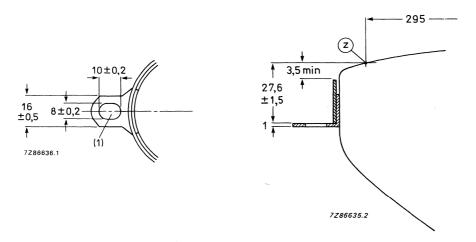


Fig. 17 Lug dimensions.

Fig 18 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 267,5 mm x 204,4 mm.

Front view and lug dimensions of tube M31-366

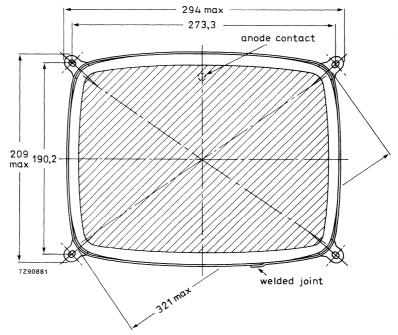


Fig. 19 Tube mounting dimensions; front view.

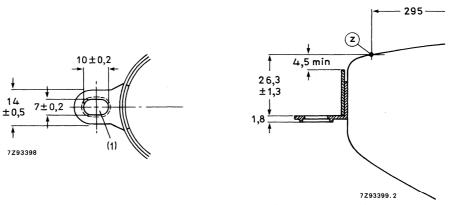
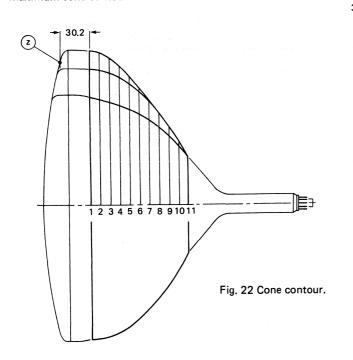



Fig. 20 Lug dimensions.

Fig. 21 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Maximum cone contour

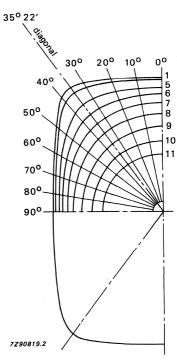



Table 1 Cone contour data

	nom. max. distance from centre											
sec- tion	distance from section 1	0o	100	200	300	diag.	400	500	600	700	800	900
1	0	140,6	142,4	147,9	156,8	160,4	156,9	139,3	126,1	117,5	112,7	111,2
2	10	139,8	141,6	147,0	155,5	158,5	154,4	136,8	123,7	115,2	110,5	109,0
3	20	137,8	139,4	144,4	151,9	153,6	149,5	133,0	120,4	112,3	107,8	106,4
4	30	133,5	135,0	139,3	144,8	145,1	141,6	127,7	116,3	108,7	104,5	103,1
5	40	126,9	128,1	131,3	134,2	133,6	130,9	120,7	110,9	104,2	100,4	99,1
6	50	117,9	118,8	120,9	122,1	121,1	119,2	112,1	104,5	98,7	95,3	94,2
7	60	107,2	107,9	109,1	109,3	108,5	107,1	102,3	96,8	92,1	89,1	88,1
8	70	95,5	95,9	96,4	96,0	95,2	94,2	91,2	87,5	84,1	81,8	80,9
9	80	82,4	82,5	82,4	81,8	81,2	80,5	78,7	76,6	74,5	73,0	72,4
10	90	67,5	67,5	67,2	66,6	66,3	65,9	65,0	64,1	63,2	62,5	62,2
11	99	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 3:4 screen aspect ratio
- 635 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	31 cm (12 in)
Overall length	max. 277 mm
Neck diameter	20 mm
Heating	12 V/75 mA
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines

APPLICATION

This high resolution tube is for alpha numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The tube can be supplied with different phosphors and anti-reflective treatments, see "High-resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method electrostatic Deflection method magnetic

Deflection angles diagonal

approx. 900 horizontal approx. 780 approx. 610 vertical

Interelectrode capacitances

cathode to all other electrodes max. 4pF 7pF grid 1 to all other electrodes max.

Capacitance of external conductive coating to anode* max. 1200 pF 450 pF min.

Capacitance of external conductive coating to anode ** 1050 pF max. 450 pF min.

Capacitance of anode to implosion protective hardware** approx. 150 pF

Heater voltage 12 V Heater current at 12 V 75 mA

OPTICAL DATA

Phosphor type see "High resolution monochrome display tubes, General"

Light transmission at screen centre tube with normal tinted face glass approx. 46%

RASTER CENTRING

tube with dark tinted face glass

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

approx.

34%

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (See also the figures under Dimensional Data)

max. 277 mm Overall length Greatest dimensions of tube diagonal 321 mm width 283 mm height 222 mm Minimum useful screen dimensions (projected) diagonal 295 mm horizontal axis 257 mm vertical axis 195 mm area 478 cm² Implosion protection T-band Bulb EIAJ-JB310AR03 or EIAJ-JB310AR04 Bulb contact designation IEC 67-III-2, EIA-J1-21 **EIA E7-91** Base designation 7GR Basing Mass approx. 2,9 kg RATINGS (Absolute Maximum System) Unless otherwise specified voltage values are positive and measured with respect to grid 1. 15 kV max. Anode voltage min. 10 kV Grid 4 (focusing electrode) voltage -200 to + 1000 V Grid 2 voltage max. 700 V

Anode current long-term average value peak value

Cathode voltage, positive peak value Heater voltage Cathode-to-heater voltage

600 µA 400 V 12 V ± 10%*

130 µA

100 V

max.

max.

max.

max.

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V -5%

CIRCUIT DESIGN VALUES

Grid 4 current		
positive	max.	25 μΑ
negative	max.	25 μΑ
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω

 $0.5 \, M\Omega$

max.

TYPICAL OPERATING CONDITIONS

Grid 1 circuit impedance

Cathode drive; voltages specified with respect to grid 1

	Out all districtions of the control	
-	Cathode cut-off voltage	30 to 60 V**
	Grid 2 voltage	400 V
	Grid 4 (focusing electrode) voltage	0 to 300 V*
	Anode voltage	12 kV

Grid drive; voltages specified with respect to cathode

Anode voltage	12 kV
→ Grid 4 (focusing electrode) voltage	0 to 300 V**
Grid 2 voltage	400 V
→ Grid 1 cut-off voltage	34 to 64 V**

RESOLUTION

- The resolution is approx. 1300 lines. It is measured at the screen centre:
 - with shrinking raster method,
 - at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 mm x 162 mm,
- at V_{q2} = 700 V and anode voltage = 12 kV,
 - with phosphor type WW,
 - with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μA (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.
 Dynamic focus (only for optimization): Typical correction for a video field of H x V = 216 mm x 162 mm:

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216$ mm $\times 162$ m line parabola 200 V,

field parabola 100 V.

** Visual extinction of focused raster.

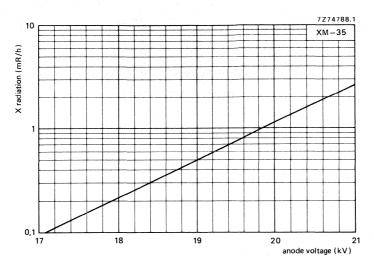


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

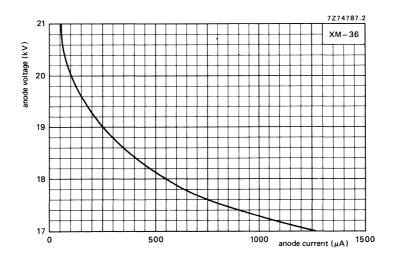


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

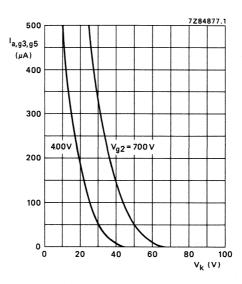


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

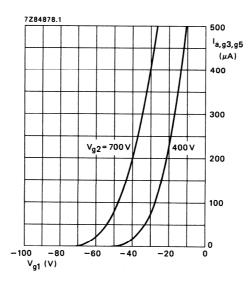


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

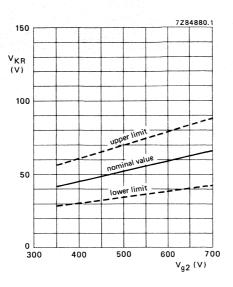


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,q3,q5} = 12 \text{ kV}$.

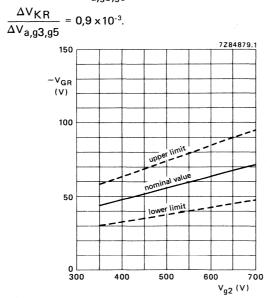


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,93,95}} = 0.9 \times 10^{-3}.$$

Dimensions in mm

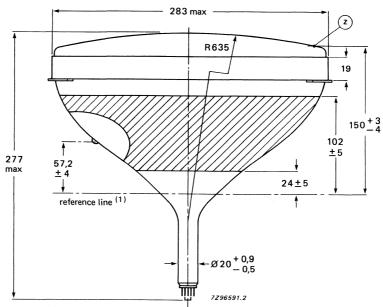
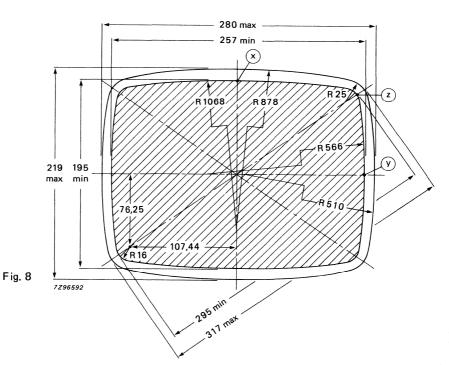
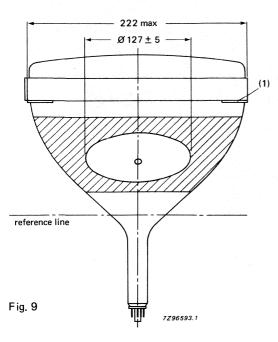




Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

(1) The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm.

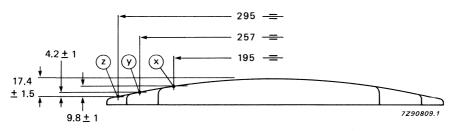


Fig. 10 Screen reference points.

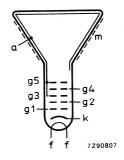


Fig. 11 Electrode configuration.

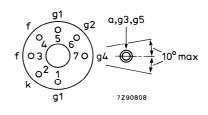


Fig. 12 Pin arrangement.

Front view and lug dimensions

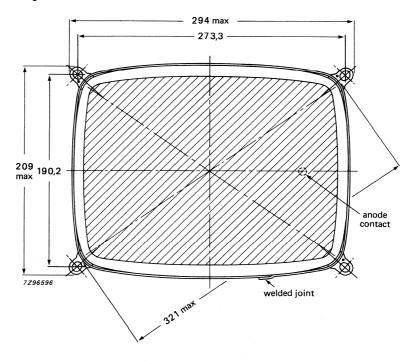


Fig. 13 Tube mounting dimensions; front view.

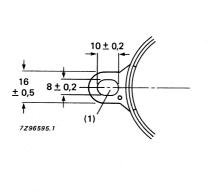


Fig. 14 Lug dimensions.

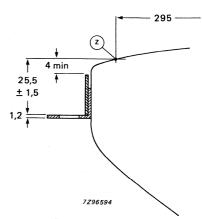


Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 273,3 mm x 190,2 mm.

Maximum cone contour

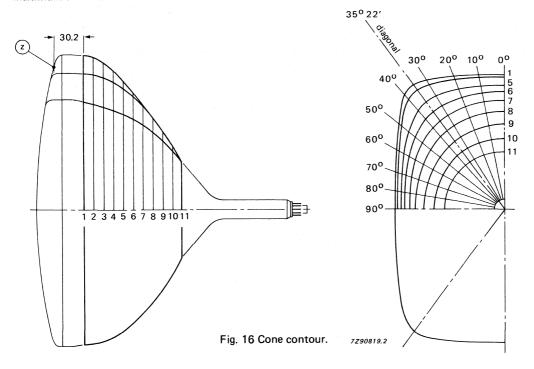


Table 1 Cone contour data

sec-	nom.		max. distance from centre											
tion	distance from section 1	0 ₀	100	200	300	diag.	400	500	60º	700	80o	900		
1	0	140,6	142,4	147,9	156,8	160,4	156,9	139,3	126,1	117,5	112,7	111,2		
2	10	139,8	141,6	147,0	155,5	158,5	154,4	136,8	123,7	115,2	110,5	109,0		
3	20	137,8	139,4	144,4	151,9	153,6	149,5	133,0	120,4	112,3	107,8	106,4		
4	30	133,5	135,0	139,3	144,8	145,1	141,6	127,7	116,3	108,7	104,5	103,1		
5	40	126,9	128,1	131,3	134,2	133,6	130,9	120,7	110,9	104,2	100,4	99,1		
6	50	117,9	118,8	120,9	122,1	121,1	119,2	112,1	104,5	98,7	95,3	94,2		
7	60	107,2	107,9	109,1	109,3	108,5	107,1	102,3	96,8	92,1	89,1	88,1		
8	70	95,5	95,9	96,4	96,0	95,2	94,2	91,2	87,5	84,1	81,8	80,9		
9	80	82,4	82,5	82,4	81,8	81,2	80,5	78,7	76,6	74,5	73,0	72,4		
10	90	67,5	67,5	67,2	66,6	66,3	65,9	65,0	64,1	63,2	62,5	62,2		
11	99	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3		

This data sheet contains advance information and specifications are subject to change without notice.

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 900 deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 3:4 screen aspect ratio
- 635 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	31 cm (12 in)
Overall length	max. 277 mm
Neck diameter	20 mm
Heating	12 V/75 mA
Grid 2 voltage	400 V
Anode voltage	12 kV
Resolution	approx. 1300 lines

APPLICATION

This high resolution tube is for alphanumeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90° approx. 78° approx. 61°
Interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 450 pF
Capacitance of external conductive coating to anode**	max. 1050 pF min. 450 pF
Capacitance of anode to implosion protective hardware**	approx. 150 pF
Heater voltage	12 V
Heater current at 12 V	75 mA
OPTICAL DATA	
Phosphor type	see "High resolution monochrome display tubes, General"

RASTER CENTRING

Light transmission at screen centre tube with normal tinted face glass

tube with dark tinted face glass

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

approx.

approx.

46%

34%

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (See also the figures under Dimensional Data)

Overall length	max. 277 mm
Greatest dimensions of tube diagonal width height	321 mm 283 mm 222 mm
Minimum useful screen dimensions (projected) diagonal horizontal axis vertical axis area	295 mm 257 mm 195 mm 478 cm ²
Implosion protection Bulb	T-band EIAJ-JB310AP03 or EIAJ-JB310AP04
Bulb contact designation	IEC 67-III-2, EIA-J1-21
Base designation Basing	EIA E7-91 7GR
Mass	approx. 2,9 kg
RATINGS (Absolute Maximum System)	
Unless otherwise specified voltage values are positive	and measured with respect to grid 1.
Anode voltage	max. 15 kV min. 10 kV
Grid 4 (focusing electrode) voltage	−200 to +1000 V
Grid 2 voltage	max. 700 V ←

Anode current
long-term average value
peak value

Cathode voltage, positive peak value

Heater voltage

Cathode-to-heater voltage

max. 700 V

max. 130 μA
max. 600 μA

Table 12 V ± 10%*

Table 12 V ± 10%*

Table 130 μA
max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $\frac{+0\%}{-5\%}$.

CIRCUIT DESIGN VALUES

Grid 4 current positive negative	max. max.	25 μA 25 μA
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω

 $1.5~\mathrm{M}\Omega$

 $0.5 M\Omega$

max.

max.

34 to 64 V**

TYPICAL OPERATING CONDITIONS

Grid 1 circuit resistance

Grid 1 circuit impedance

Cathode drive; voltages specified with respect to grid 1

	Anode voltage	12 kV	
-	Grid 4 (focusing electrode) voltage	0 to 300 V*	
	Grid 2 voltage	400 V	
-	Cathode cut-off voltage	30 to 60 V**	
	Grid drive; voltages specified with respect to cathode		
	Anode voltage	12 kV	
-	Grid 4 (focusing electrode) voltage	0 to 300 V*	
	Grid 2 voltage	400 V	

RESOLUTION

Grid 1 cut-off voltage

- The resolution is approx. 1300 lines. It is measured at the screen centre:
 - with shrinking raster method,
 - at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 216 mm x 162 mm,
- at V_{q2} = 700 V and anode voltage = 12 kV,
 - with phosphor type WW,
 - with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μA (peak), anode voltage = 12 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 216 \text{ mm} \times 162 \text{ mm}$: line parabola 200 V,

field parabola 100 V.

** Visual extinction of focused raster.

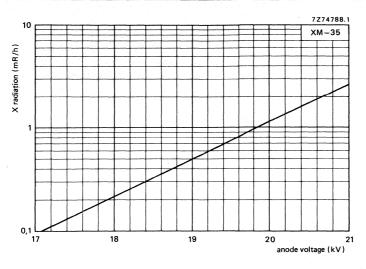


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

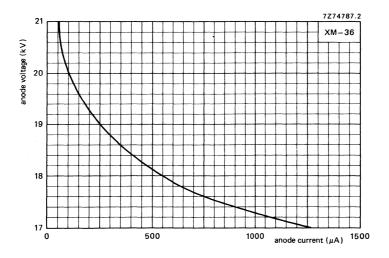


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

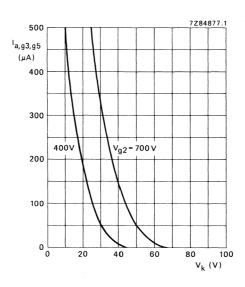


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,q3,q5} = 12 \text{ kV}$.

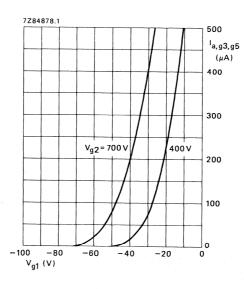


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

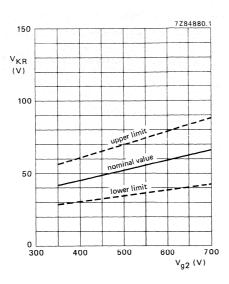


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

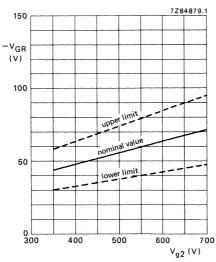


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 12 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

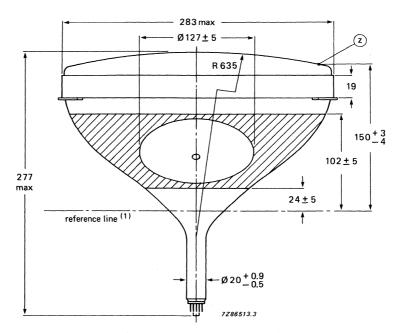
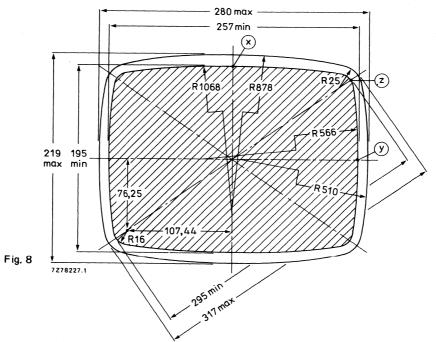



Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

Fig. 9

4.2 ± 1

9.8 ± 1

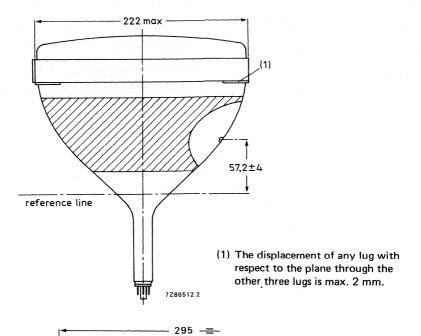


Fig. 10 Screen reference points.

257 -

195 =



Fig. 11 Electrode configuration.

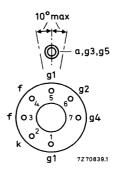


Fig. 12 Pin arrangement.

7Z90809.1

Front view and lug dimensions of tube

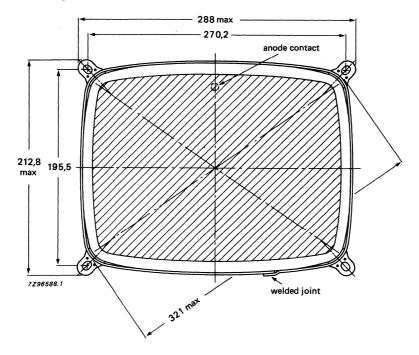


Fig. 13 Tube mounting dimensions; front view.

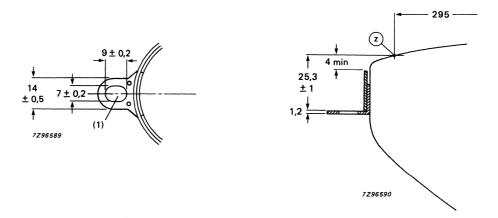
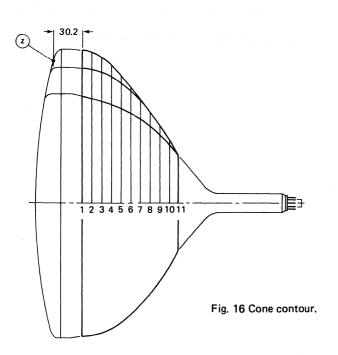



Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 270,2 mm x 195,5 mm.

Maximum cone contour

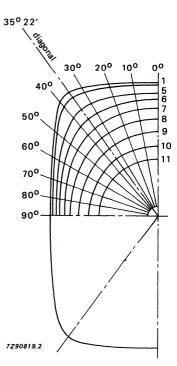


Table 1 Cone contour data

sec-			max. distance from centre											
tion	distance from section 1	0o	100	200	300	diag.	400	500	60º	700	800	900		
1	0	140,6	142,4	147,9	156,8	160,4	156,9	139,3	126,1	117,5	112,7	111,2		
2	10	139,8	141,6	147,0	155,5	158,5	154,4	136,8	123,7	115,2	110,5	109,0		
3	20	137,8	139,4	144,4	151,9	153,6	149,5	133,0	120,4	112,3	107,8	106,4		
4	30	133,5	135,0	139,3	144,8	145,1	141,6	127,7	116,3	108,7	104,5	103,1		
5	40	126,9	128,1	131,3	134,2	133,6	130,9	120,7	110,9	104,2	100,4	99,1		
6	50	117,9	118,8	120,9	122,1	121,1	119,2	112,1	104,5	98,7	95,3	94,2		
7	60	107,2	107,9	109,1	109,3	108,5	107,1	102,3	96,8	92,1	89,1	88,1		
8	70	95,5	95,9	96,4	96,0	95,2	94,2	91,2	87,5	84,1	81,8	80,9		
9	80	82,4	82,5	82,4	81,8	81,2	80,5	78,7	76,6	74,5	73,0	72,4		
10	90	67,5	67,5	67,2	66,6	66,3	65,9	65,0	64,1	63,2	62,5	62,2		
11	99	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3	50,3		

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	34 cm (14 in)
Overall length	max. 287 mm
Neck diameter	20 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	14 kV
Resolution	approx. 1300 lines

APPLICATION

This high resolution tube is for alphanumeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M32EAA and M32EBF.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional data'.

M32EAA M32EBE

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90° approx. 82° approx. 67°
Interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 600 pF
Capacitance of external conductive coating to anode**	max. 1050 pF min. 450 pF
Capacitance of anode to implosion protection hardware**	approx. 150 pF
Heater voltage	12 V
Heater current at 12 V	130 mA

OPTICAL DATA

Phosphor type	see "High resolution mono-
	chrome display tubes, General"
Light transmission at screen centre	
turba vida a a mara latina a latina a latina.	400/

tube with normal tinted face glass tube with dark tinted face glass

approx. 48% approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 287 mm

Greatest dimensions of tube

 diagonal
 350 mm

 width
 298 mm

 height
 240 mm

Minimum useful screen dimensions (projected)

diagonal 322 mm
horizontal axis 270 mm
vertical axis 210 mm
area 554 cm²

Implosion protection T-band/rimband

Bulb E1AJ-JB340AB03 or E1AJ-JB340AD04

IEC 67-III-2, EIAJ1-21

Bulb contact designation IEC 67-III-2, E Base designation EIA-E7-91

Base designation EIA-E7
Basing 7GR

Mass approx. 3,6 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage max. 16 kV min. 10 kV

Grid 4 (focusing electrode) voltage -200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

long-term average value max. $130~\mu A$ peak value max. $600~\mu A$ Cathode voltage, positive peak value max. 400~V Heater voltage $12~V~\pm~10\%^*$ Cathode-to-heater voltage max. 100~V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$.

CIRCUIT DESIGN VALUES

Grid 4 current		
positive	max.	25 μΑ
negative	max.	25 μA
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage	14 kV	
Grid 4 (focusing electrode) voltage	0 to 30	00 V*
Grid 2 voltage	400 V	
Cathode cut-off voltage	32 to 6	64 V**
Grid drive; voltages specified with respect to cathode		
Anode voltage	14 kV	
Grid 4 (focusing electrode) voltage	0 to 30	00 V*

RESOLUTION

Grid 2 voltage

Grid 1 cut-off voltage

The resolution is approx. 1300 lines. It is measured at the screen centre:

- · with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- at V_{q2} = 700 V and anode voltage = 14 kV,
- with phosphor type WW,
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

400 V

35 to 70 V**

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 237 \text{ mm} \times 178 \text{ mm}$: line parabola 200 V, field parabola 100 V.

^{**} Visual extinction of focused raster.

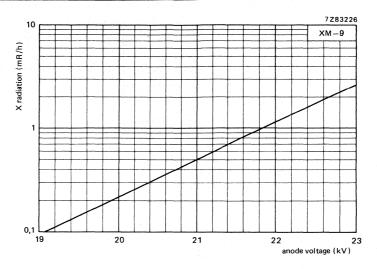


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

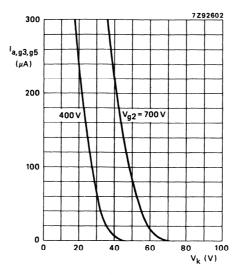


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,q3,q5} = 14 \text{ kV}$.

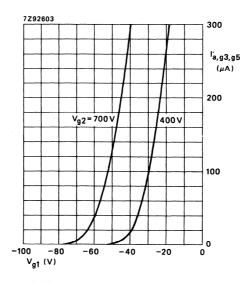


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 14 \text{ kV}$.

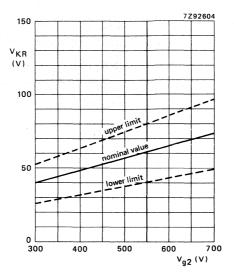


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 14 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

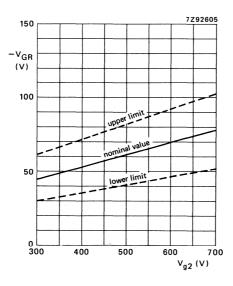
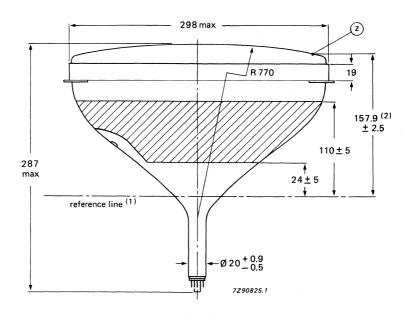
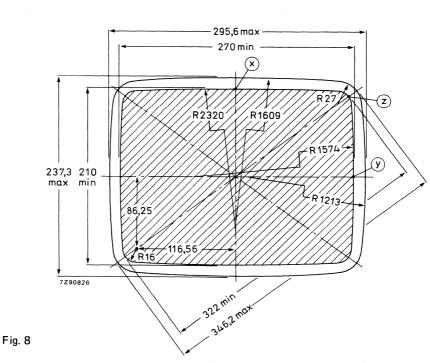




Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 14 \text{ kV}$.

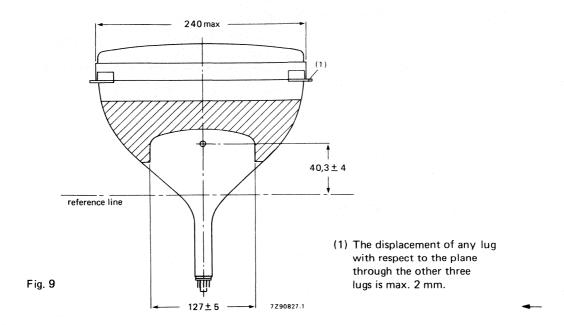

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

Fig. 7

- (1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.
- (2) If NEG type, this value changes to; 159,6 \pm 3,5.

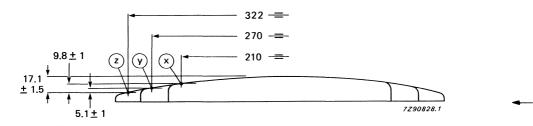


Fig. 10 Screen reference points.

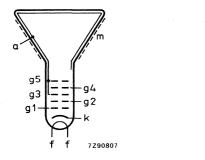


Fig. 11 Electrode configuration.

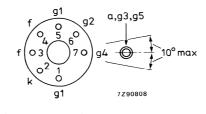


Fig. 12 Pin arrangement.

311

Front view and lug dimensions of tube M32EAA

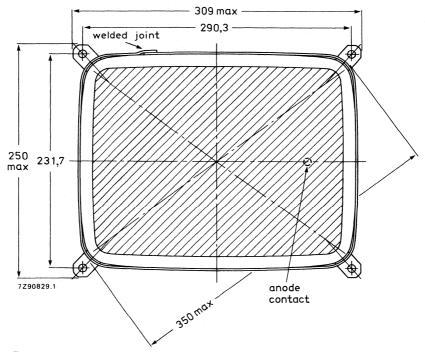


Fig. 13 Tube mounting dimensions; front view.

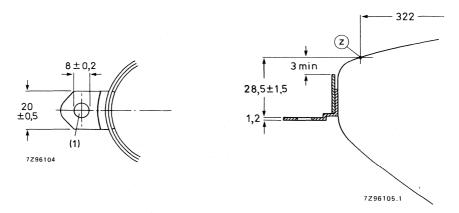


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.

Front view and lug dimensions of tube M32EBF *

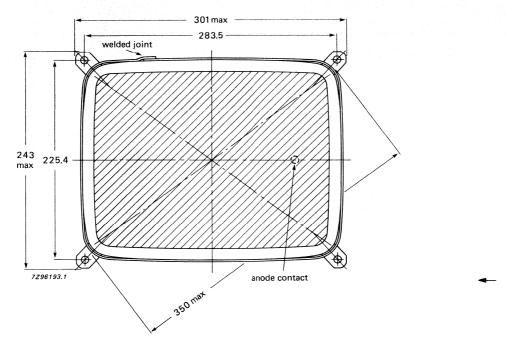
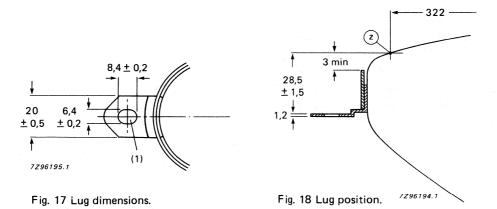



Fig. 16 Tube mounting dimensions; front view.

- (1) The mounting screws in the cabinet must be situated inside a circle of 3,4 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 283,5 mm x 225,4 mm.
- This tube is still under development; data are provisional.

Maximum cone contour

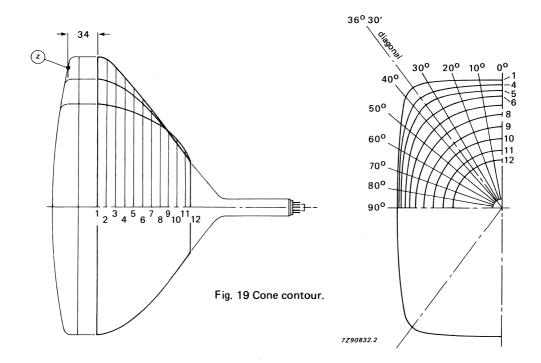


Table 1 Cone contour data

sec-	nom.	max. distance from centre											
tion	distance from section 1	00	100	200	300	diag.	400	500	60º	700	800	900	
1	0	148,0	150,1	156,5	167,9	173,6	172,0	152,3	136,3	126,5	121,1	119,4	
2	10	146,1	148,2	154,6	165,4	171,0	169,6	150,9	135,2	125,4	120,1	118,4	
3	20	142,4	144,3	150,1	158,4	161,6	160,4	146,3	132,0	122,8	117,7	116,1	
4	30	136,7	138,4	143,1	148,8	150,2	149,2	139,4	127,6	119,2	114,5	113,0	
5	40	128,9	130,3	133,9	137,6	138,3	137,6	131,2	122,2	115,0	110,7	109,3	
6	50	119,5	120,6	123,2	125,7	126,2	125,8	122,0	115,8	110,0	106,3	105,1	
7	60	109,2	110,1	111,8	113,5	113,9	113,8	111,9	108,1	104,1	101,1	100,1	
8	70	98,7	99,2	100,2	101,2	101,5	101,6	100,9	99,1	96,8	94,9	94,1	
9	80	87,6	87,7	88,1	88,6	88,9	89,0	89,0	88,6	87,8	86,9	86,4	
10	90	75,5	75,4	75,4	75,6	75,7	75,8	76,1	76,3	76,3	76,2	76,1	
11	100	62,0	62,0	61,8	61,8	61,8	61,9	62,0	62,2	62,4	62,5	62,5	
12	105,7	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	34 cm (14 in)
Overall length	max. 287 mm
Neck diameter	20 mm
Heating	12 V/75 mA
Grid 2 voltage	400 V
Anode voltage	14 kV
Resolution	approx. 1300 lines

APPLICATION

These high resolution tubes are for alphanumeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M32EAB and M32EAK.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional Data'.

M32EAB M32EAK

ELECTRICAL DATA

	Focusing method	electrostatic
	Deflection method	magnetic
	Deflection angles diagonal horizontal vertical	approx. 90 ⁰ approx. 82 ⁰ approx. 67 ⁰
>	Interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 7 pF
	Capacitance of external conductive coating to anode*	max. 1200 pF min. 600 pF
	Capacitance of external conductive coating to anode**	max. 1050 pF min. 450 pF
	Capacitance of anode to implosion protection hardware**	approx. 150 pF
	Heater voltage	12 V
	Heater current at 12 V	75 mA

OPTICAL DATA Phosphor type

Phosphor type	see "High resolution mono-
	chrome display tubes, General"
Light transmission at screen centre	

tube with normal tinted face glass approx. 48% tube with dark tinted face glass approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

SAFOLIA SULO AL	-				
MECHANICAL	111111	icon nico the	tiquires under	Dimoncional	112+21
MEDITARIOAL	· PAIA	isee also tile	nuures under	Difficusional	Dalai

Overall length max. 287 mm Greatest dimensions of tube diagonal 350 mm width 298 mm height 240 mm Minimum useful screen dimensions (projected) 322 mm diagonal horizontal exis 270 mm vertical axis 210 mm area 554 cm² Implosion protection T-band/rimband Bulb EIAJ-JB340AB03 or EIAJ-JB340AD04 **Bulb** contact designation IEC 67-III-2, EIAJ1-21 Base designation EIA-E7-91 Basing 7GR Mass approx. 3,6 kg RATINGS (Absolute Maximum System) Unless otherwise specified voltage values are positive and measured with respect to grid 1. 16 kV max. Anode voltage 10 kV min. -200 to +1000 V Grid 4 (focusing electrode) voltage max. 700 V Grid 2 voltage

Anode current

long-term average value max. 130 μ A peak value max. 600 μ A Cathode voltage, positive peak value max. 400 V Heater voltage 12 V \pm 10%* Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

M32EAB M32EAK

CIRCUIT DESIGN VALUES

Grid 4 current positive negative	max. max.	25 μA 25 μA
Grid 2 current positive negative	max. max.	5 μA 5 μA
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

	Anode voltage	14 kV
-	Grid 4 (focusing electrode) voltage	0 to 300 V*
	Grid 2 voltage	400 V
-	Cathode cut-off voltage	32 to 64 V**
	Grid drive; voltages specified with respect to cathode	
	Anode voltage	14 kV

Grid 4 (focusing electrode) voltage 0 to 300 V*
Grid 2 voltage 400 V

→ Grid 1 cut-off voltage 35 to 70 V**

RESOLUTION

- The resolution is approx. 1300 lines. It is measured at the screen centre:
 - with shrinking raster method,
 - at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- → at V_{q2} = 700 V and anode voltage = 14 kV,
 - with phosphor type WW,
 - with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μA (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 237 \text{ mm} \times 178 \text{ mm}$: line parabola 200 V, field parabola 100 V.

** Visual extinction of focused raster.

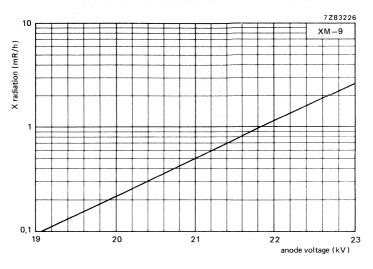


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

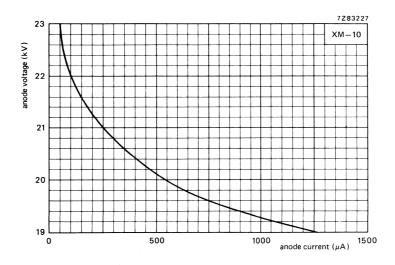


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

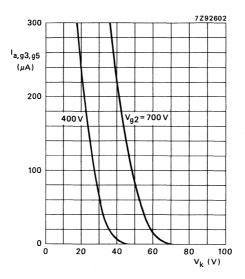


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 14 \text{ kV}$.

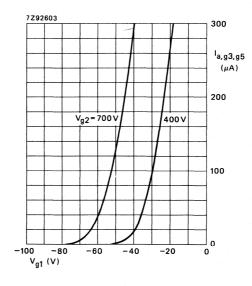


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5}$ = 14 kV.

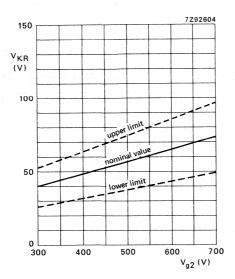


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g}3,g5 = 14 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

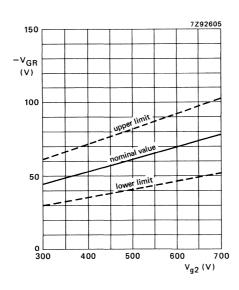


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 14 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

DIMENSIONAL DATA

Dimensions in mm

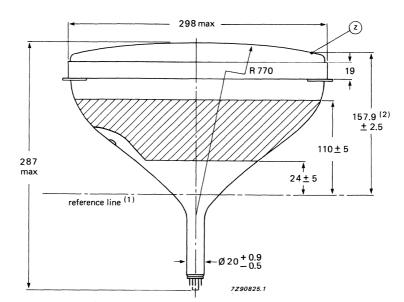
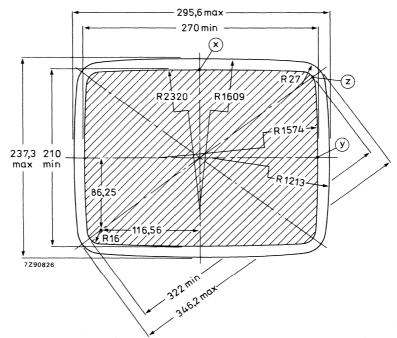



Fig. 7

- Fig. 8
- (1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.
- (2) If NEG type, this value changes to; 159,6 \pm 3,5.

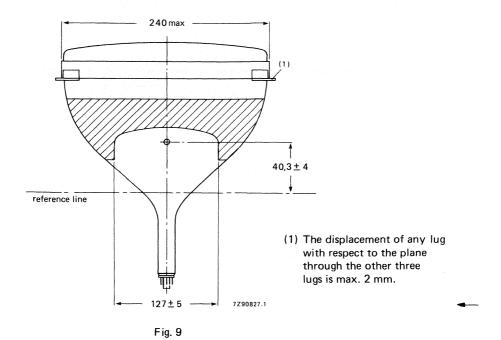


Fig. 10 Screen reference points.

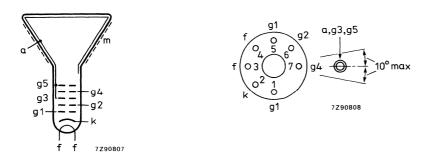


Fig. 11 Electrode configuration.

Fig. 12 Pin arrangement.

Front view of tube M32EAB

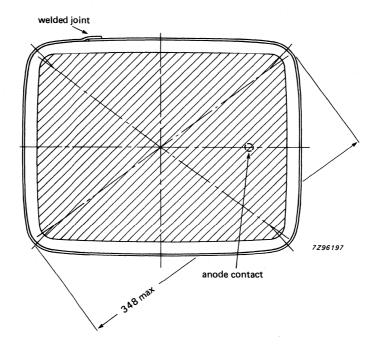


Fig. 13 Tube front view with rimband.

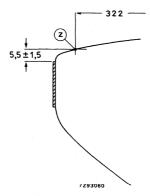


Fig. 14 Rimband position.

Front view and lug dimensions of tube M32EAK

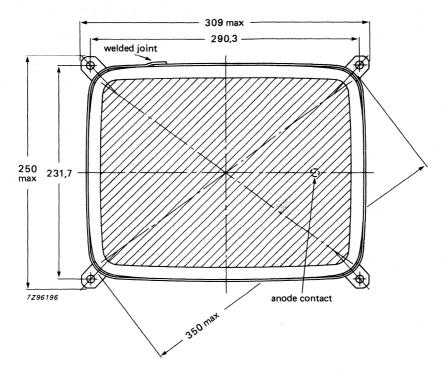


Fig. 15 Tube mounting dimensions; front view.

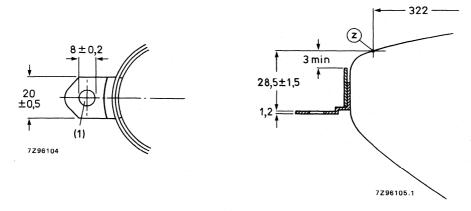


Fig. 16 Lug dimensions.

Fig. 17 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.

Maximum cone contour

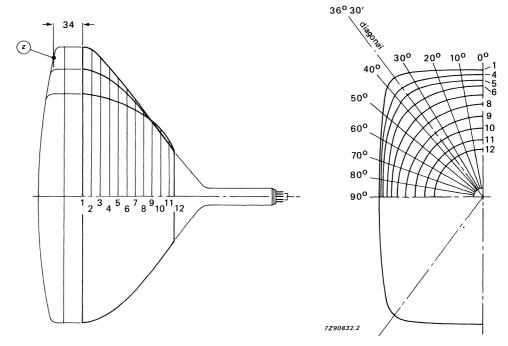


Fig. 18 Cone contour.

Table 1 Cone contour data

sec-	nom.				max. d	istance	from cei	ntre				
tion	distance from section 1	00	100	200	300	diag.	400	500	600	700	800	900
1	0	148,0	150,1	156,5	167,9	173,6	172,0	152,3	136,3	126,5	121,1	119,4
2	10	146,1	148,2	154,6	165,4	171,0	169,6	150,9	135,2	125,4	120,1	118,4
3	20	142,4	144,3	150,1	158,4	161,6	160,4	146,3	132,0	122,8	117,7	116,1
4	30	136,7	138,4	143,1	148,8	150,2	149,2	139,4	127,6	119,2	114,5	113,0
5	40	128,9	130,3	133,9	137,6	138,3	137,6	131,2	122,2	115,0	110,7	109,3
6	50	119,5	120,6	123,2	125,7	126,2	125,8	122,0	115,8	110,0	106,3	105,1
7	60	109,2	110,1	111,8	113,5	113,9	113,8	111,9	108,1	104,1	101,1	100,1
8	70	98,7	99,2	100,2	101,2	101,5	101,6	100,9	99,1	96,8	94,9	94,1
9	80	87,6	87,7	88,1	88,6	88,9	89,0	89,0	88,6	87,8	86,9	86,4
10	90	75,5	75,4	75,4	75,6	75,7	75,8	76,1	76,3	76,3	76,2	76,1
11	100	62,0	62,0	61,8	61,8	61,8	61,9	62,0	62,2	62,4	62,5	62,5
12	105,7	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5

FLAT HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 1520 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	34 cm (14 in)
Overall length	max. 282 mm
Neck diameter	20 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	14 kV
Resolution	approx. 1300 lines

APPLICATION

This high resolution tube is for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M32EBJ and M32EBL.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional data'.

M32EBJ M32EBL

ELECTRICAL DATA

Focusing method electrostatic Deflection method magnetic Deflection angles diagonal approx. 900 horizontal approx. 790 approx. 650 vertical Interelectrode capacitances cathode to all other electrodes max. 4 pF grid 1 to all other electrodes 7 pF max. max. 1200 pF Capacitance of external conductive coating to anode* min. 600 pF max. 1050 pF Capacitance of external conductive coating to anode** min. 450 pF Capacitance of anode to implosion protection hardware** approx. 150 pF 12 V Heater voltage Heater current at 12 V 130 mA

OPTICAL DATA

Phosphor type see "High resolution monochrome display tubes, General"

Light transmission at screen centre
tube with normal tinted face glass
tube with dark tinted face glass
approx. 30%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 282 mm

Greatest dimensions of tube

 diagonal
 348,5 mm

 width
 298 mm

 height
 240 mm

Minimum useful screen dimensions (projected)

diagonal 320 mm
horizontal axis 269 mm
vertical axis 210 mm
area 554 cm²

Implosion protection T-band/rimband

Bulb EIAJ-JB340AH03 or

EIAJ-JB340AH04

Bulb contact designation IEC 67-III-2, EIAJ1-21

Base designation EIA-E7-91
Basing 7GR

Mass approx. 3,9 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage $$\rm max.~16~kV$$ $\rm min.~10~kV$

Grid 4 (focusing electrode) voltage —200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

long-term average value max. 130 μ A peak value max. 600 μ A Cathode voltage, positive peak value max. 400 V Heater voltage 12 V \pm 10%* Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $\frac{+0\%}{500}$.

M32EBJ M32EBL

CIRCUIT DESIGN VALUES

Grid 4 current		
positive	max.	25 μΑ
negative	max.	25 μΑ
Grid 2 current		
positive	max.	5 μΑ
negative	max.	5 μΑ
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1 ΜΩ
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage	14 kV	,
Grid 4 (focusing electrode) voltage	0 to 3	00 V*
Grid 2 voltage	400 V	,
Cathode cut-off voltage	32 to	64 V**
Grid drive; voltages specified with respect to cathode		
Anode voltage	14 kV	,
Grid 4 (focusing electrode) voltage	0 to 3	00 V*
Grid 2 voltage	400 V	
Grid 1 cut-off voltage	35 to	70 V**

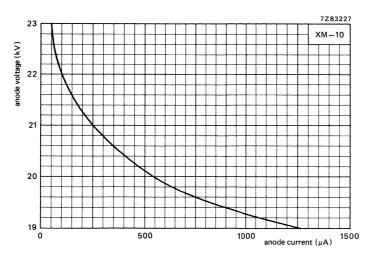
RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

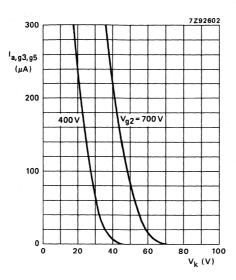
- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- at V_{q2} = 700 V and anode voltage = 14 kV,
- with phosphor type WW,
- with normal tinted face glass, without anti-glare treatment of screen surface.

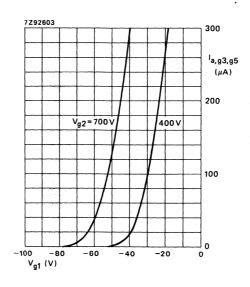
X-RADIATION CHARACTERISTIC

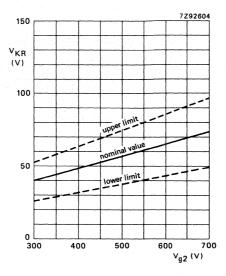
X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.


* Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.

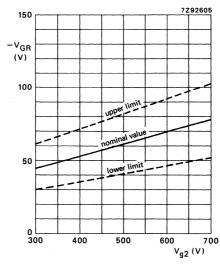
Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 237 \text{ mm} \times 178 \text{ mm}$: line parabola 200 V, field parabola 100 V.


** Visual extinction of focused raster.


X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.


 $0.5\ mR/h$ isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

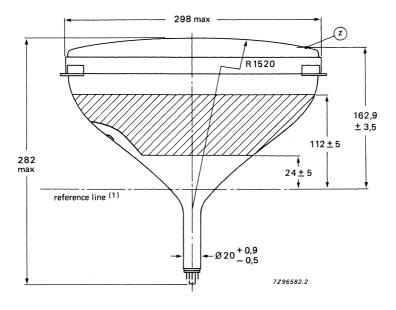
Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 14 \text{ kV}$.

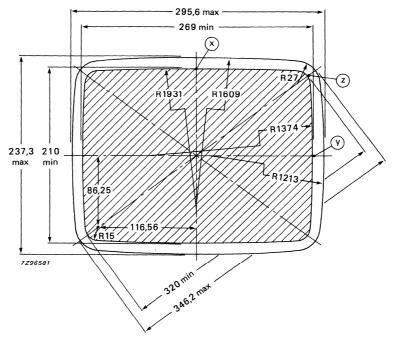


Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5}$ = 14 kV.

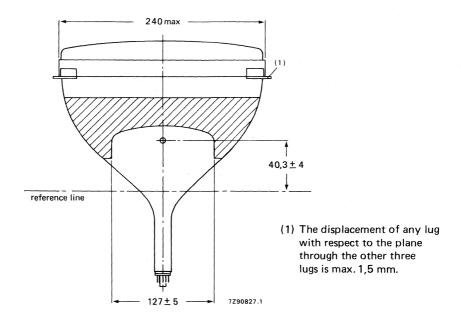
Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 14 \text{ kV}$.

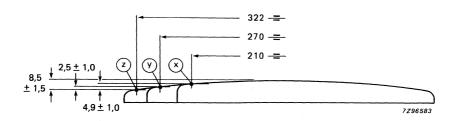
$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$$

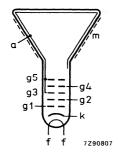


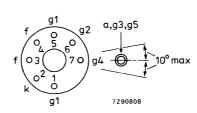

Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 14 \text{ kV}$.

$$\frac{\Delta V_{\mbox{\footnotesize GR}}}{\Delta V_{\mbox{\footnotesize a,g3,g5}}} = 0.9 \times 10^{-3}. \label{eq:deltaV_GR}$$

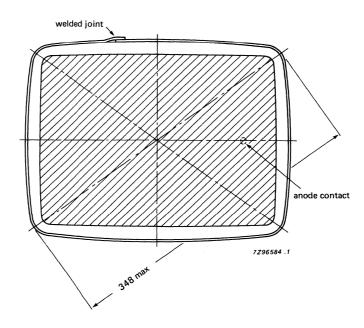

DIMENSIONAL DATA

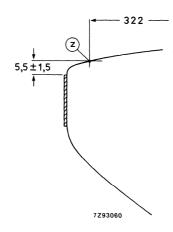

Dimensions in mm

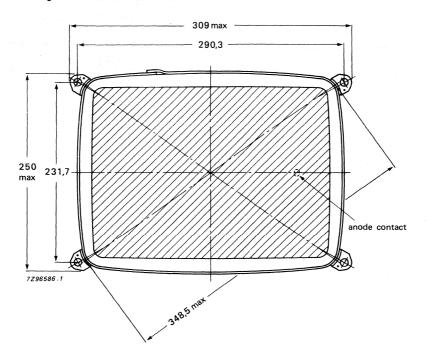


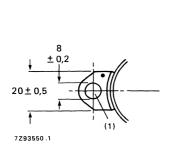


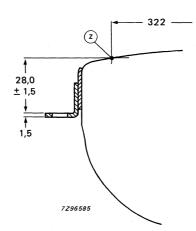
(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.



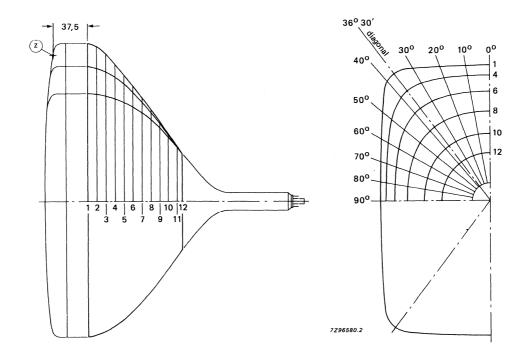





Front view of tube M32EBJ



Front view and lug dimensions of tube M32EBL



(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.

M32EBJ M32EBL

Maximum cone contour

sec-	nom. distance				max	k. distar	ice from	centre				
tion	from section 1	0,00	10,00	20,00	30,00	36,50	40,00	50,00	60,00	70,00	80,00	90,00
1	0	147,75	149,80	156,19	167,63	173,43	171,77	151,39	135,49	125,67	120,31	118,60
2	10	146,15	148,17	154,42	165,14	170,27	168,65	149,73	134,26	124,62	119,34	117,66
3	20	142,36	144,25	149,91	158,20	161,07	159,63	145,28	131,24	122,14	117,11	115,50
4	30	136,49	138,18	142,87	148,45	149,74	148,65	138,71	126,91	118,58	113,89	112,39
5	40	128,75	130,16	133,72	137,36	137,91	137,07	130,27	121,08	113,85	109,61	108,23
6	50	119,35	120,49	123,12	125,56	125,86	125,30	120,77	113,97	108,01	104,28	103,05
7	60	108,70	109,58	111,51	113,24	113,50	113,19	110,37	105,66	101,04	97,92	96,84
8	70	97,64	98,27	99,58	100,70	100,90	100,74	99,10	96,11	92,85	90,43	89,53
9	80	86,29	86,69	87,45	88,06	88,14	88,04	87,11	85,36	83,31	81,62	80,93
10	90	74,00	74,26	74,72	75,09	75,14	75,10	74,60	73,64	72,44	71,37	70,90
11	100	60,59	60,78	61,12	61,41	61,51	61,52	61,35	60,93	60,34	59,78	59,50
12	110	51,89	51,97	52,09	52,20	52,23	52,24	52,19	52,07	51,90	51,73	51,64

This data sheet contains advance information and specifications are subject to change without notice.

FLAT HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 900 deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 1520 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	34 cm (14 in)
Overall length	max. 282 mm
Neck diameter	20 mm
Heating	12 V/75 mA
Grid 2 voltage	400 V
Anode voltage	14 kV
Resolution	approx. 1300 lines

APPLICATION

These high resolution tubes are for alphanumeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M32EBM and M32EBN.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional Data'.

M32EBM M32EBN

ELECTRICAL DATA

Focusing method electrostatic Deflection method magnetic Deflection angles diagonal approx. 900 horizontal approx. 790 vertical approx. 650 Interelectrode capacitances cathode to all other electrodes 4 pF max. grid 1 to all other electrodes 7 pF max. max. 1200 pF Capacitance of external conductive coating to anode* 600 pF min. max. 1050 pF Capacitance of external conductive coating to anode** min. 450 pF

Capacitance of anode to implosion protection hardware** approx. 150 pF
Heater voltage 12 V
Heater current at 12 V 75 mA

OPTICAL DATA

Phosphor type see "High resolution monochrome display tubes, General"

Light transmission at screen centre
tube with normal tinted face glass
tube with dark tinted face glass
approx. 30%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

- * Implosion protection hardware connected to external conductive coating.
- ** Implosion protection hardware not connected to external conductive coating.

max. 282 mm

MECHANICAL DATA	(see also the figures under	Dimensional Data)
MEDITARIOAL DATA	(see also the rigares ander	Dillichsional Data

Greatest dimensions of tube
diagonal 348,5 mm
width 298 mm
height 240 mm

Minimum useful screen dimensions (projected)

diagonal 320 mm
horizontal axis 269 mm
vertical axis 210 mm
area 554 cm²

Implosion protection T-band/rimband

Bulb E1AJ-JB340AH03 or E1AJ-JB340AH04

Bulb contact designation IEC 67-III-2, EIAJ1-21

Base designation EIA-E7-91
Basing 7GR

Mass approx. 3,9 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage max. 16 kV min. 10 kV

Grid 4 (focusing electrode) voltage -200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

Overall length

long-term average value \max 130 μ A peak value \max 600 μ A Cathode voltage, positive peak value \max 400 V

Heater voltage $12 \text{ V} \pm 10\%^*$

Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$.

M32EBM M32EBN

CIRCUIT DESIGN VALUES

	Grid 4 current				
	positive			max.	25 μΑ
	negative			max.	25 μΑ
	Grid 2 current				200
	positive			max.	5 μΑ
	negative			max.	5 μΑ
	MAXIMUM CIRCUIT VALUES				
	Resistance between cathode and heater			max.	1 M Ω
	Impedance between cathode and heater		1	max.	0,1 M Ω
	Grid 1 circuit resistance		0.0	max.	1,5 M Ω
	Grid 1 circuit impedance			max.	0,5 ΜΩ
	TYPICAL OPERATING CONDITIONS				
	Cathode drive; voltages specified with respect to grid 1	Ì			
	Anode voltage			14 kV	•
	Grid 4 (focusing electrode) voltage			0 to 3	00 V*
	Grid 2 voltage			400 V	
-	Cathode cut-off voltage		;	32 to	64 V**
	Grid drive; voltages specified with respect to cathode				
	Anode voltage			14 kV	
	Grid 4 (focusing electrode) voltage			0 to 3	00 V*
	Grid 2 voltage			400 V	
	Grid 1 cut-off voltage		;	35 to	70 V**

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
 - at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- at V_{q2} = 700 V and anode voltage = 14 kV,
 - with phosphor type WW,
 - with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μA (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 237 \text{ mm} \times 178 \text{ mm}$: line parabola 200 V,

field parabola 100 V.

** Visual extinction of focused raster.

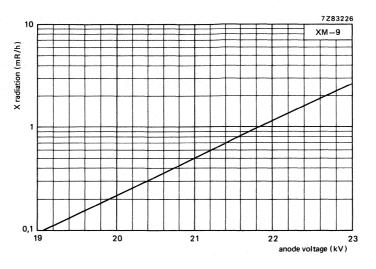


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

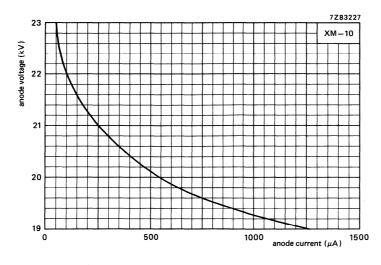


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

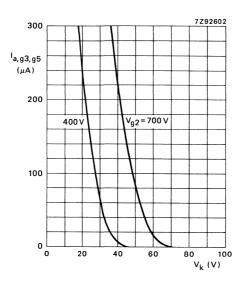


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,q3,q5} = 14 \text{ kV}$.

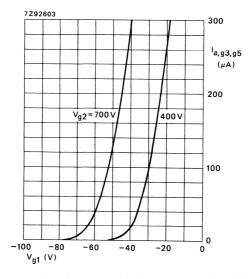


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,93,95} = 14 \text{ kV}$.

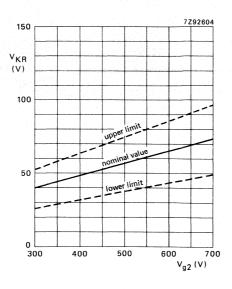


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; V_{a,g3,g5} = 14 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,93,95}} = 0.9 \times 10^{-3}.$$

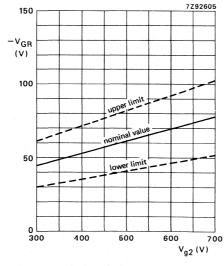


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 14 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}$$
.

DIMENSIONAL DATA

Dimensions in mm

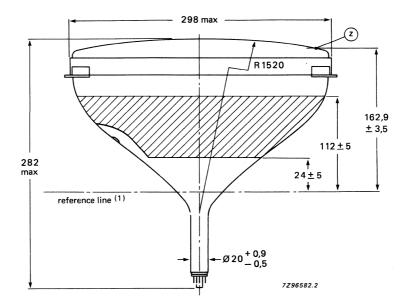
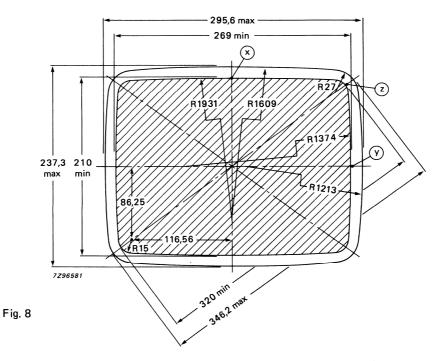



Fig. 7

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

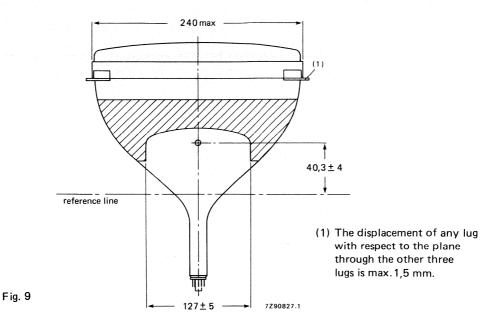


Fig. 10 Screen reference points.

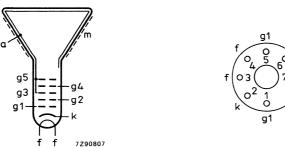


Fig. 11 Electrode configuration.

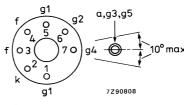


Fig. 12 Pin arrangement.

Front view of tube M32EBM

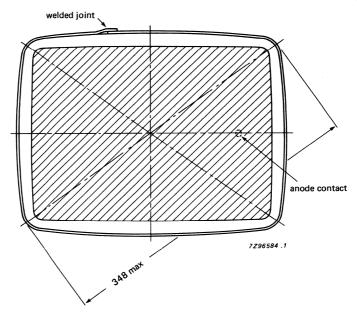


Fig. 13 Tube front view with rimband.

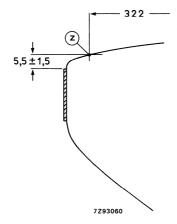


Fig. 14 Rimband position.

Front view and lug dimensions of tube M32EBN

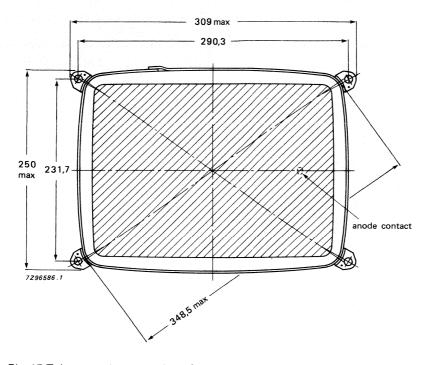


Fig. 15 Tube mounting dimensions; front view.

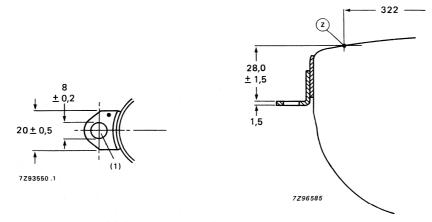


Fig. 16 Lug dimensions.

Fig. 17 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.

Maximum cone contour

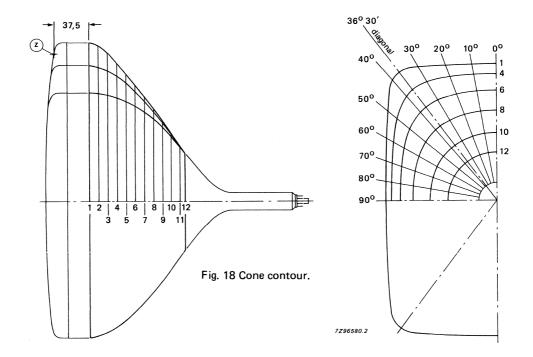


Table 1 Cone contour data

sec-	nom. distance			max. distance from centre								
tion	from section 1	0,00	10,00	20,00	30,00	36,50	40,00	50,00	60,00	70,00	80,00	90,00
1	0	147,75	149,80	156,19	167,63	173,43	171,77	151,39	135,49	125,67	120,31	118,60
2	10	146,15	148,17	154,42	165,14	170,27	168,65	149,73	134,26	124,62	119,34	117,66
3	20	142,36	144,25	149,91	158,20	161,07	159,63	145,28	131,24	122,14	117,11	115,50
4	30	136,49	138,18	142,87	148,45	149,74	148,65	138,71	126,91	118,58	113,89	112,39
5	40	128,75	130,16	133,72	137,36	137,91	137,07	130,27	121,08	113,85	109,61	108,23
6	50	119,35	120,49	123,12	125,56	125,86	125,30	120,77	113,97	108,01	104,28	103,05
7	60	108,70	109,58	111,51	113,24	113,50	113,19	110,37	105,66	101,04	97,92	96,84
8	70	97,64	98,27	99,58	100,70	100,90	100,74	99,10	96,11	92,85	90,43	89,53
9	80	86,29	86,69	87,45	88,06	88,14	88,04	87,11	85,36	83,31	81,62	80,93
10	90	74,00	74,26	74,72	75,09	75,14	75,10	74,60	73,64	72,44	71,37	70,90
11	100	60,59	60,78	61,12	61,41	61,51	61,52	61,35	60,93	60,34	59,78	59,50
12	110	51,89	51,97	52,09	52,20	52,23	52,24	52,19	52,07	51,90	51,73	51,64

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

FLAT HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 900 deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 1520 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	90°
Face diagonal	34 cm (14 in)
Overall length	max. 282 mm
Neck diameter	20 mm
Heating	12 V/130 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	14 kV
Resolution	approx. 1300 lines

APPLICATION

This high resolution tube is for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 90 ⁰ approx. 79 ⁰ approx. 65 ⁰
Interelectrode capacitances	
cathode to all other electrodes	max. 4 pF
grid 1 to all other electrodes	max. 7 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 600 pF
Capacitance of external conductive coating to anode**	max. 1050 pF min. 450 pF
Capacitance of anode to implosion protection hardware**	approx. 150 pF
Heater voltage	12 V
Heater current at 12 V	130 mA
OPTICAL DATA	

Phosphor type	see ''High resolution mono- chrome display tubes, General"			
Light transmission at screen centre				
tube with normal tinted face glass	approx. 42%			
tube with dark tinted face glass	approx. 30%			

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 282 mm

Greatest dimensions of tube

 diagonal
 348,5 mm

 width
 298 mm

 height
 240 mm

Minimum useful screen dimensions (projected)

diagonal 320 mm
horizontal axis 269 mm
vertical axis 210 mm
area 554 cm²

Implosion protection T-band/rimband

Bulb E1AJ-JB340AH03 or E1AJ-JB340AH04

Bulb contact designation IEC 67-III-2, EIAJ1-21

Base designation EIA-E7-91

Basing 7GR

Mass approx. 3,9 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage max. 16 kV min. 10 kV

Grid 4 (focusing electrode) voltage -200 to + 1000 V

Grid 2 voltage max. 700 V

Anode current

 $\begin{array}{ccc} \text{long-term average value} & \text{max. } 130~\mu\text{A} \\ \text{peak value} & \text{max. } 600~\mu\text{A} \\ \text{Cathode voltage, positive peak value} & \text{max. } 400~\text{V} \\ \end{array}$

Heater voltage 12 V ± 10%*

Cathode-to-heater voltage max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 V $^{+0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current		
positive	ma	
negative	ma	x. 25 μA
Grid 2 current		
positive	ma	
negative	ma	x. 5 μA
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	ma	x. 1 MΩ
Impedance between cathode and heater	ma	x. 0,1 MΩ
Grid 1 circuit resistance	ma	x. 1,5 MΩ
Grid 1 circuit impedance	ma	x. 0,5 MΩ
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage	14	kV
Grid 4 (focusing electrode) voltage	0 t	o 300 V*
Grid 2 voltage	400) V
Cathode cut-off voltage	32	to 64 V**
Grid drive; voltages specified with respect to cathode		
Anode voltage	14	kV
Grid 4 (focusing electrode) voltage	0 t	o 300 V*
Grid 2 voltage	400) V
Grid 1 cut-off voltage	25	to 70 V**

RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- at V_{a2} = 700 V and anode voltage = 14 kV,
- with phosphor type WW,
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

- * Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.
 - **Dynamic focus** (only for optimization): Typical correction for a video field of $H \times V = 237 \text{ mm} \times 178 \text{ mm}$ line parabola 200 V,
 - field parabola 100 V.
- ** Visual extinction of focused raster.

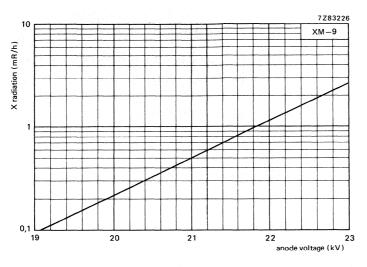


Fig. 1 X-radiation limit curve according to JEDEC94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

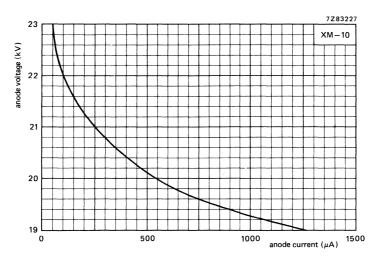


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

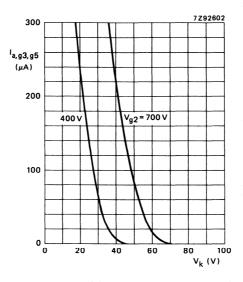


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 14 \text{ kV}$.

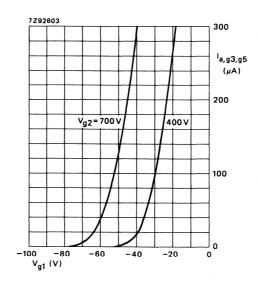


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 14 \text{ kV}$.

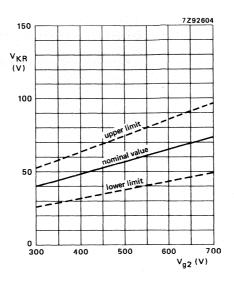


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5}$ = 14 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}$$

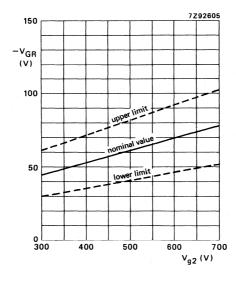


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,q3,q5} = 14 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}$$

DIMENSIONAL DATA

Dimensions in mm

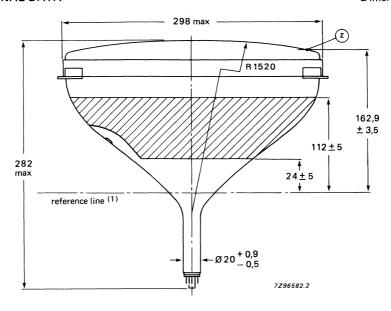


Fig. 7.

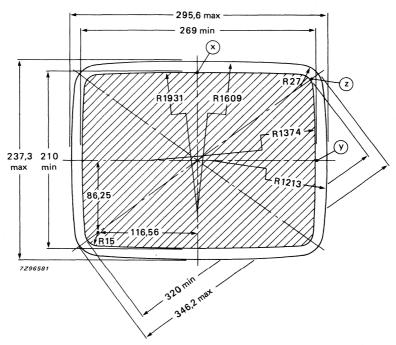


Fig. 8.

(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

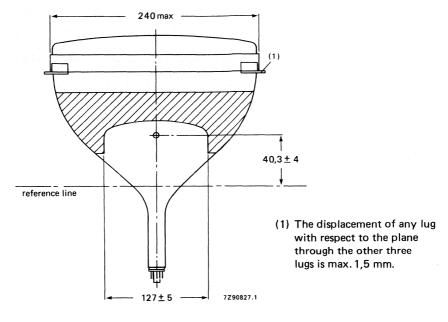


Fig. 9.

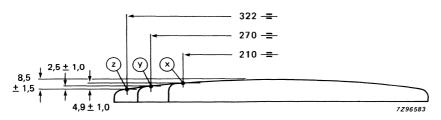


Fig. 10 Screen reference points.

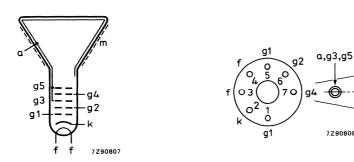


Fig. 11 Electrode configuration.

Fig. 12 Pin arrangement; bottom view.

7Z90808

Front view and lug dimensions

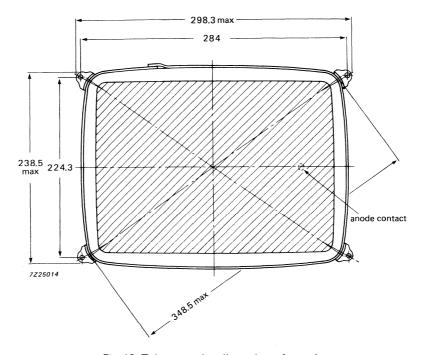


Fig. 13 Tube mounting dimensions; front view.

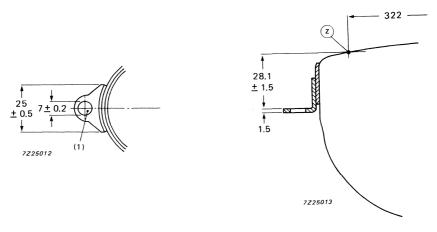


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

Maximum cone contour

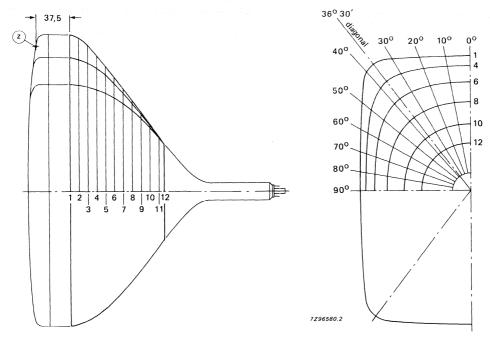


Fig. 16 Cone contour.

Table 1 Contour data

sec-	nom. distance											
tion	from section 1	0,00	10,00	20,00	30,00	36,50	40,00	50,00	60,00	70,00	80,00	90,00
1	0	147,75	149,80	156,19	167,63	173,43	171,77	151,39	135,49	125,67	120,31	118,60
2	10	146,15	148,17	154,42	165,14	170,27	168,65	149,73	134,26	124,62	119,34	117,66
3	20	142,36	144,25	149,91	158,20	161,07	159,63	145,28	131,24	122,14	117,11	115,50
4	30	136,49	138,18	142,87	148,45	149,74	148,65	138,71	126,91	118,58	113,89	112,39
5	40	128,75	130,16	133,72	137,36	137,91	137,07	130,27	121,08	113,85	109,61	108,23
6	50	119,35	120,49	123,12	125,56	125,86	125,30	120,77	113,97	108,01	104,28	103,05
7	60	108,70	109,58	111,51	113,24	113,50	113,19	110,37	105,66	101,04	97,92	96,84
8	70	97,64	98,27	99,58	100,70	100,90	100,74	99,10	96,11	92,85	90,43	89,53
9	80	86,29	86,69	87,45	88,06	88,14	88,04	87,11	85,36	83,31	81,62	80,93
10	90	74,00	74,26	74,72	75,09	75,14	75,10	74,60	73,64	72,44	71,37	70,90
11	100	60,59	60,78	61,12	61,41	61,51	61,52	61,35	60,93	60,34	59,78	59,50
12	110	51,89	51,97	52,09	52,20	52,23	52,24	52,19	52,07	51,90	51,73	51,64

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

FLAT SQUARE HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 1100 deflection angle
- 38 cm (15 in) face diagonal; rectangular glass
- 1200 mm radius of screen curvature
- 28,6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	110 ^o
Face diagonal	38 cm (15 in)
Overall length	max. 276 mm
Neck diameter	28,6 mm
Heating	6,3 V/240 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	17 kV
Resolution	approx. 1500 lines

APPLICATION

This high resolution tube is for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method electrostatic
Deflection method magnetic

Deflection angles

diagonal approx. 1100 horizontal approx. 970 vertical approx. 800

Interelectrode capacitances

cathode to all other electrodes max. 4 pF
grid 1 to all other electrodes max. 9 pF

max. 1200 pF

Capacitance of external conductive coating to anode*

min. 600 pF

Heater voltage 6,3 V
Heater current at 6,3 V 240 mA

OPTICAL DATA

Phosphor type see "High resolution monochrome display

monochrome display tubes, General" approx. 34%

Light transmission at screen centre

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

Anode voltage

Cathode-to-heater voltage

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 276 mm Greatest dimensions of tube diagonal 396 mm width 332 mm height 267 mm Minimum useful screen dimensions (projected) diagonal 363 mm horizontal axis 296 mm vertical axis 229 mm 670 cm² area Implosion protection rimband Bulb EIAJ-JB390AA03 Bulb contact designation IEC 67-III-2, EIAJ1-21 Base designation EIA-B7-208; IEC 67-1-31a Basing 8HR Mass approx. 5,8 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

min. 13 kV Grid 4 (focusing electrode) voltage -500 to + 1000 V Grid 2 voltage max. 700 V Anode current long-term average value 75 µA max. peak value max. 300 μA Cathode voltage, positive peak value max. 400 V Heater voltage 6,3 V ± 10%*

19 kV

max.

max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 6,3 V $^{+0\%}_{-5\%}$

Grid 4 current

CIRCUIT DESIGN VALUES

positive negative		max. 25 μA max. 25 μA
Grid 2 current		
positive		max. 5 μA
negative		max. $5 \mu A$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	max. 1,0 M Ω
Impedance between cathode and heater	max. 0,1 M Ω
Grid 1 circuit resistance	max. 1,5 M Ω
Grid 1 circuit impedance	max. $0.5~\mathrm{M}\Omega$

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

Anode voltage	17 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	40 to 70 V**

Grid drive; voltages specified with respect to cathode

Anode voltage	17 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	45 to 83 V**

RESOLUTION

The resolution is approx. 1500 lines. It is measured at the screen centre:

- · with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 267 mm x 200 mm,
- at V_{q2} = 700 V and anode voltage = 17 kV,
- with phosphor type W (WW),
- without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

* Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 17 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization):

typical correction for a video field of H x V = 267 mm x 200 mm (landscape format):

line parabola 350 V, field parabola 100 V;

typical correction for a video field of H x V = 200 mm x 267 mm (portrait format):

line parabola 200 V, field parabola 250 V.

** Visual extinction of focused raster.

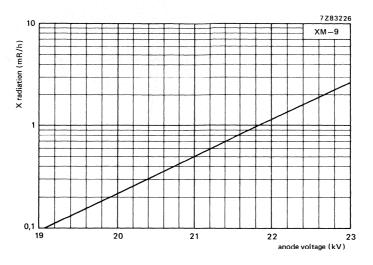


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

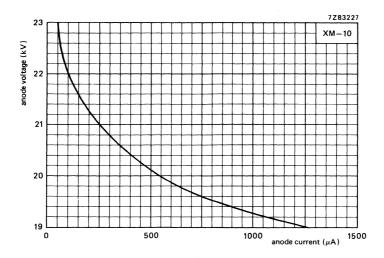


Fig. 2 0,5 mR/h isoexposure-rate limit curve, according to JEDEC 94, measured according to TEPAC103A.

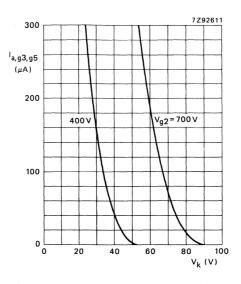


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 17 \text{ kV}$.

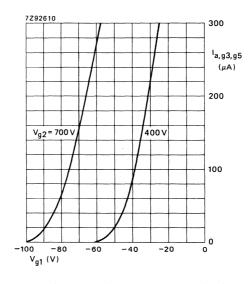


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 17 \ kV$.

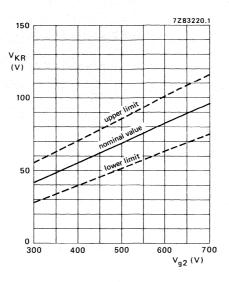


Fig. 5 Limits of cathode raster cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5}$ = 17 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$

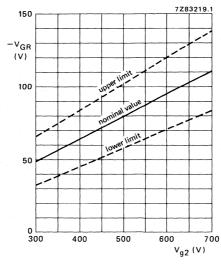


Fig. 6 Limits of grid 1 raster cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 17 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$

DIMENSIONAL DATA

Dimensions in mm

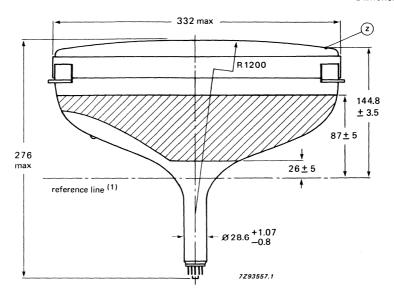
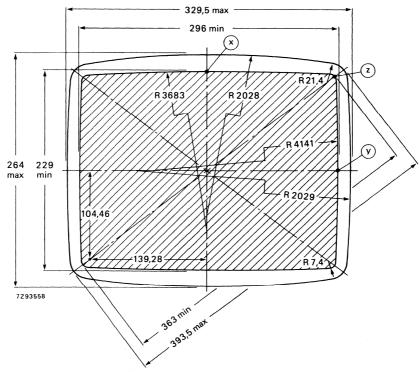
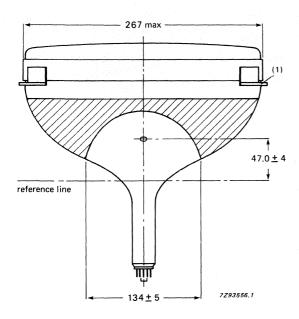




Fig. 7.

(1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.

Fig. 8.

 The displacement of any lug with respect to the plane through the other three lugs is max. 1,5 mm.

Fig. 9.

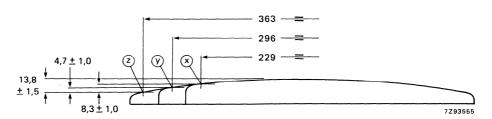


Fig. 10 Screen reference points.

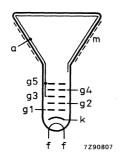


Fig. 11 Electrode configuration.

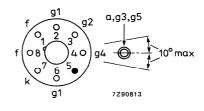


Fig. 12 Pin arrangement; bottom view.

Front view and lug dimensions

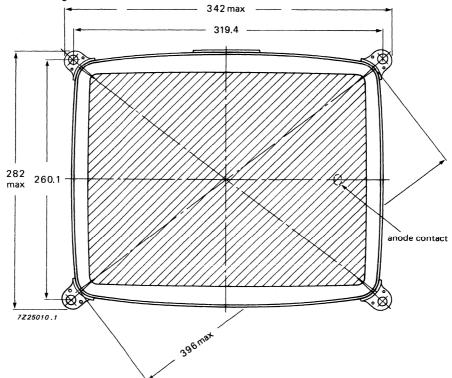


Fig. 13 Tube mounting dimensions; front view.

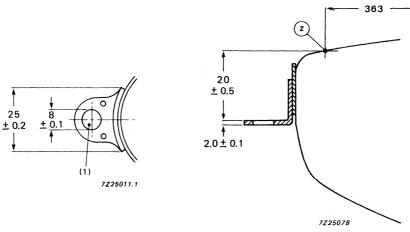


Fig. 14 Lug dimensions.

Fig. 15 Lug position.

Maximum cone contour.

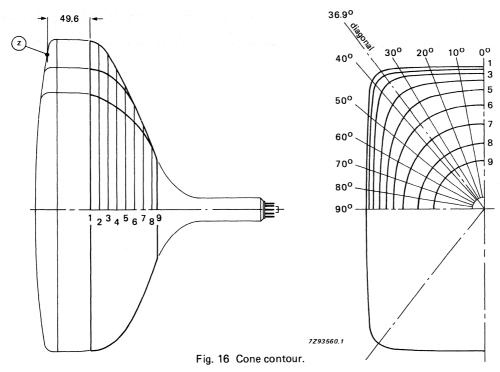



Table 1 Contour data.

sec-	nom.		max. distance from centre									
tion	distance from section 1	0o	10º	20°	30°	diag.	40°	50°	60º	70º	80º	90o
1	0	164,4	166,7	174,0	187,2	196,5	194,1	168,0	150,4	139,5	133,6	131,7
2	10	162,5	164,8	171,9	184,8	193,4	190,6	165,2	147,9	137,2	131,3	129,5
3	20	157,6	159,7	166,3	177,4	182,4	179,2	157,5	141,4	131,4	125,8	124,1
4	30	149,7	151,5	156,5	162,6	162,6	160,2	145,9	132,6	123,8	118,9	117,4
5	40	138,1	139,3	141,8	143,0	141,4	139,8	131,7	122,7	115,7	111,6	110,2
6	50	121,0	121,4	121,9	121,4	120,0	119,1	115,1	110,3	105,9	102,9	101,8
7	60	99,2	99,3	99,4	99,0	98,4	98,1	96,6	94,7	92,7	91,2	90,5
8	70	76,2	76,2	76,2	76,0	75,9	75,8	75,5	75,2	74,7	74,4	74,2
9	75, 39	57,8	57,8	57,8	57,8	57,8	57,8	57,8	57,8	57,8	57,8	57,8

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 1100 deflection angle
- 38 cm (15 in) face diagonal; rectangular glass
- 28,6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	110 ^o
Face diagonal	38 cm (15 in)
Overall length	max. 279 mm
Neck diameter	28,6 mm
Heating	6,3 V/240 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	17 kV
Resolution	approx. 1500 lines

APPLICATION

These high resolution tubes are for alphanumeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M38-328, M38-330, M38-332, M38-334, M38-336, M38-338, M38-342 and M38-344.

Differences between the tubes can be found under 'Dimensional data'.

The tubes can be supplied with different phosphors and anti-reflective treatments, see 'High resolution monochrome display tubes, General'.

M38-328 M38-330 M38-332 M38-334 M38-336 M38-338 M38-342 M38-344

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 110° approx. 98° approx. 81°
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 9 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 600 pF
Capacitance of external conductive coating to anode**	max. 1000 pF min. 500 pF
Capacitance of anode to implosion protection hardware**	approx. 200 pF
Heater voltage	6,3 V
Heater current at 6,3 V	240 mA
OPTICAL DATA	
Phosphor type	see "High resolution monochro

Phosphor type	see "High resolution monochrome
	display tubes, General''
Light transmission at screen centre	
tube with normal tinted face glass	approx. 46%
tube with dark tinted face glass	approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

Overall length

M38-328 M38-330 M38-332 M38-334 M38-336 M38-338 M38-342 M38-344

279 mm

MECHANICAL DATA (see also the figures under Dimensional Data)

Greatest dimensions of tube
diagonal 383 mm
width 324 mm
height 262 mm

Minimum useful screen dimensions (projected)
diagonal 353 mm

horizontal axis
vertical axis
vertical axis
area

293 mm
229 mm
652 cm²
Implosion protection
rimband

Bulb EIAJ-JB370AB03 or EIAJ-JB370AB04

Bulb contact designation IEC 67-III-2; EIA-J1-21
Base designation IEC 67-1-31a; EIA-B7-208

Basing 8 HR
Mass approx. 4 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage $\begin{array}{c} \text{max.} & 19 \text{ kV} \\ \text{min.} & 13 \text{ kV} \\ \end{array}$ Grid 4 (focusing electrode) voltage $-500 \text{ to } +1000 \text{ V} \\ \text{Grid 2 voltage} & \text{max.} & 700 \text{ V} \\ \text{Anode current} \\ \end{array}$

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 6,3 V $^{+0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current positive negative	max. max.	25 μΑ 25 μΑ
Grid 2 current positive negative	max. max.	5 μΑ 5 μΑ

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance	max.	1,5 M Ω
Grid 1 circuit impedance	max.	0,5 M Ω

TYPICAL OPERATING CONDITIONS

Cathode drive; voltages specified with respect to grid 1

Anode voltage	17 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	40 to 70 V**

Grid drive; voltages specified with respect to cathode

Anode voltage	17 KV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	45 to 83 V**

RESOLUTION

The resolution is approx. 1500 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 254 mm x 194 mm,
- at V_{q2} = 700 V and anode voltage = 17 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 259 \text{ mm} \times 194 \text{ mm}$ (landscape format): line parabola 300 V, field parabola 100 V; $H \times V = 194 \text{ mm} \times 259 \text{ mm}$ (portrait format): line parabola 200 V, field parabola 250 V.

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 17 kV, grid 2 voltage = 400 V.

^{**} Visual extinction of focused raster.

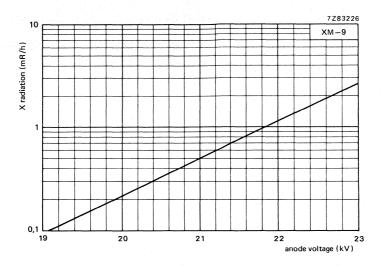


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

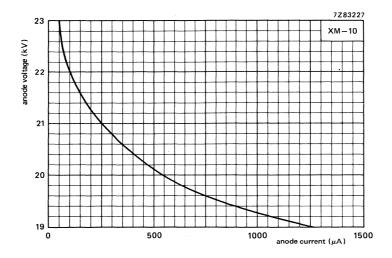


Fig. 2 0,5 mR/h isoexposure rate limit curve, according to JEDEC 94, measured according to TEPAC103A.

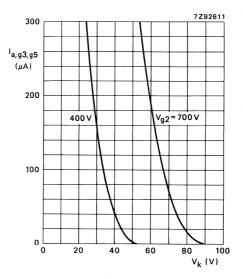


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 17 \text{ kV}$.

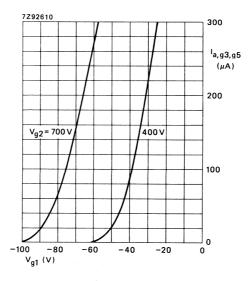


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 17 \text{ kV}$.

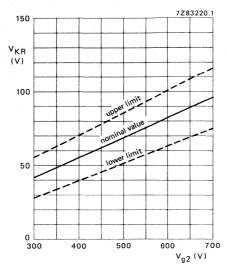


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,g3,g5} = 17 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

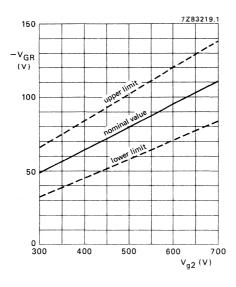
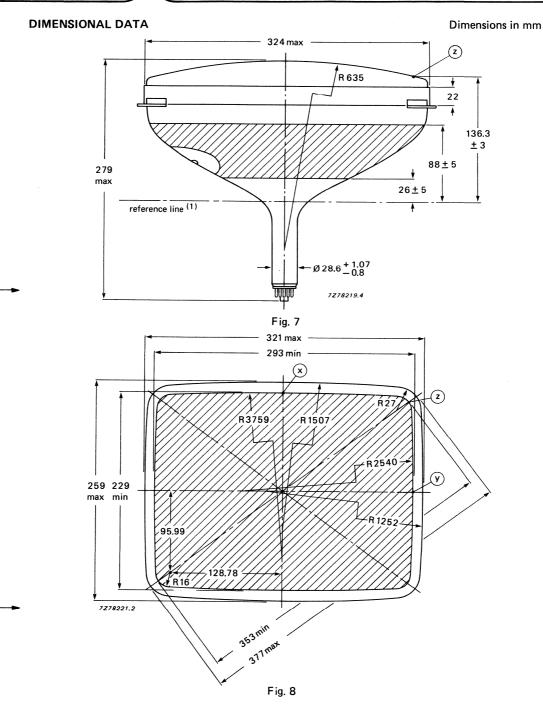



Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,q3,q5} = 17 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

(1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.

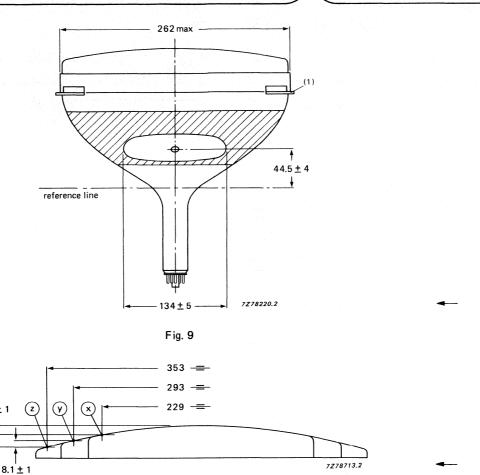


Fig. 10 Screen reference points.

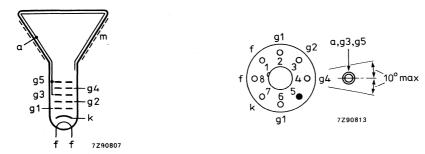


Fig. 11 Electrode configuration.

Fig. 12 Pin arrangement.

(1) The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.

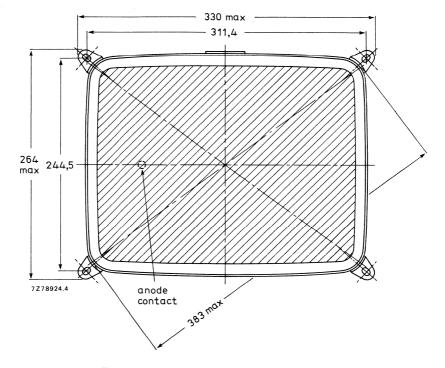


Fig. 13 Tube mounting dimensions; front view.

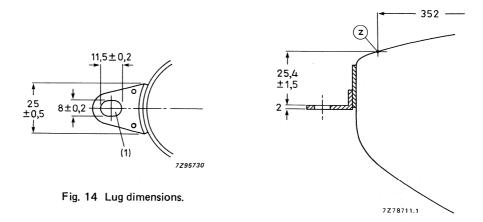


Fig. 15 Lug position.

M38-328 M38-330 M38-332 M38-334 M38-336 M38-338 M38-342 M38-344

Front view and lug dimensions of tube M38-330

Fig. 16 Tube mounting dimensions; front view.

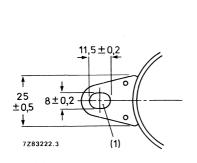


Fig. 17 Lug dimensions.

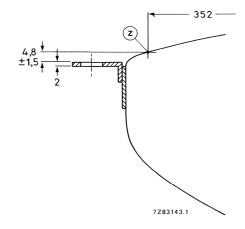


Fig. 18 Lug position.

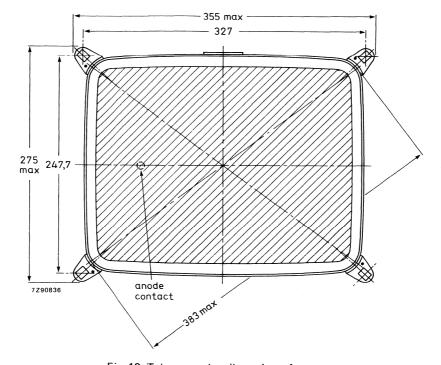


Fig. 19 Tube mounting dimensions; front view.

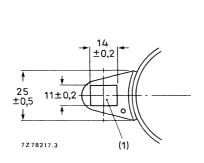


Fig. 20 Lug dimensions.

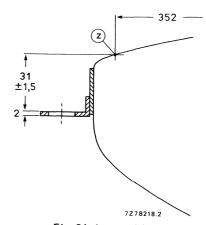


Fig. 21 Lug position.

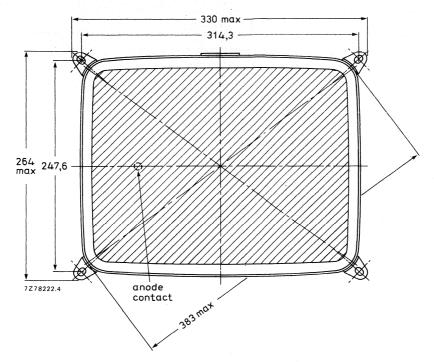


Fig. 22 Tube mounting dimensions; front view.

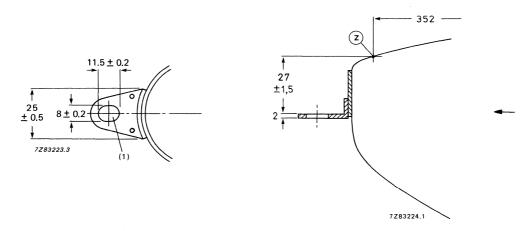


Fig. 23 Lug dimensions

Fig. 24 Lug position.

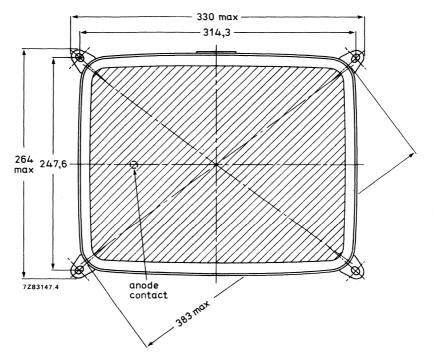


Fig. 25 Tube mounting dimensions; front view.

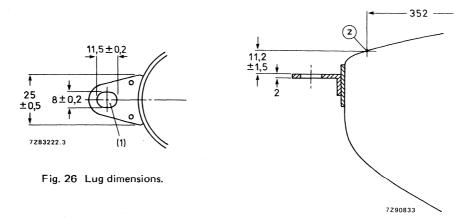


Fig. 27 Lug position.

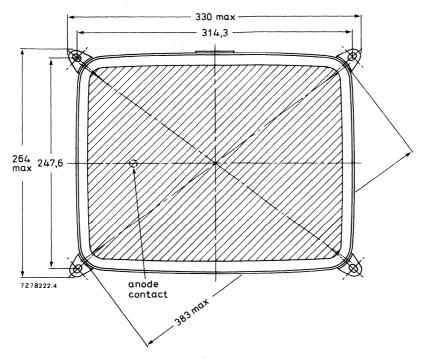


Fig. 28 Tube mounting dimensions; front view.

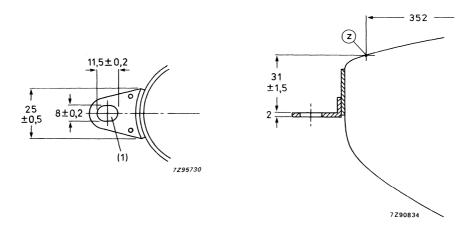


Fig. 29 Lug dimensions.

Fig. 30 Lug position.

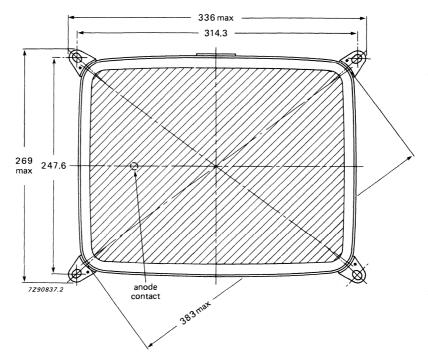


Fig. 31 Tube mounting dimensions; front view.

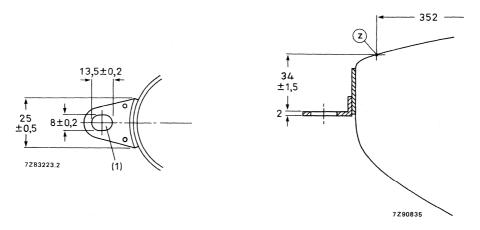


Fig. 32 Lug dimensions

Fig. 33 Lug position.

M38-328 M38-330 M38-332 M38-334 M38-336 M38-338 M38-342 M38-344

Front view of tube M38-344

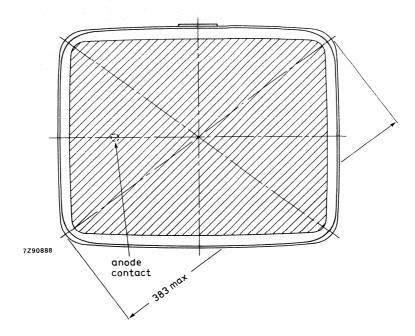


Fig. 34 Tube front view with rimband.

Fig. 35 Rimband position.

Maximum cone contour

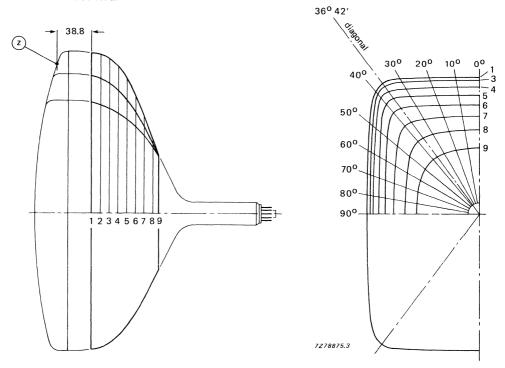


Fig. 36 Cone contour.

Table 1 Cone contour data

nom.		max. distance from centre										
tion	distance	00	100	200	300	diag.	400	500	60º	700	800	900
1	0	160,0	162,2	168,9	180,8	187,8	185,9	163,3	146,7	136,3	130,6	128,8
2	10	158,2	160,4	167,2	179,3	186,4	184,5	161,6	144,8	134,5	128,8	127,0
3	20	152,8	154,9	161,5	173,6	181,3	179,1	155,7	139,5	129,4	123,9	122,2
4	30	143,4	145,4	151,7	163,1	170,9	169,1	147,1	131,6	122,1	116,8	115,2
5	40	131,3	133,1	138,8	149,0	156,3	155,4	136,6	122,3	113,4	108,6	107,0
6	50	116,9	118,5	123,4	132,0	138,1	138,2	124,1	111,7	103,8	99,5	98,1
7	60	101,1	102,3	106,2	112,4	116,2	116,6	109,5	100,0	93,6	89,9	88,7
8	70	84,5	85,3	87,4	89,9	90,9	91,0	89,4	85,8	82,1	79,7	78,8
9	76,7	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3

HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 1100 deflection angle
- 38 cm (15 in) face diagonal; rectangular glass
- 28,6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	110 ^o
Face diagonal	38 cm (15 in)
Overall length	max. 279 mm
Neck diameter	28,6 mm
Heating	12 V/130 mA
Quick heating cathode with a typical tube a legib will appear within 5 s	
Grid 2 voltage	400 V
Anode voltage	17 kV
Resolution	approx. 1500 lines

APPLICATION

This high resolution tube is for alphanumeric and graphic display applications, such as computer terminals, small business computers, etc.

AVAILABLE VERSIONS

The following versions are available: M38-346 and M38-348. Differences between the tubes can be found under 'Dimensional data'.

The tube can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 110 ⁰ approx. 98 ⁰ approx. 81 ⁰
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 9 pF
Capacitance of external conductive coating to anode*	max. 1200 pF min. 600 pF
Capacitance of external conductive coating to anode**	max. 1000 pF min. 500 pF
Capacitance of anode to implosion protection hardware**	approx. 200 pF
Heater voltage	12 V
Heater current at 12 V	130 mA

OPTICAL DATA

Phosphor type	see "High resolution monochrome
	display tubes, General"
Cinha turner interest to the control of the control	

Light transmission at screen centre tube with normal tinted face glass tube with dark tinted face glass

approx. 46% approx. 34%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

Overall length max. 279 mm

Greatest dimensions of tube

 diagonal
 383 mm

 width
 324 mm

 height
 262 mm

Minimum useful screen dimensions (projected)

diagonal 353 mm
horizontal axis 293 mm
vertical axis 229 mm
area 652 cm²

Implosion protection rimband

Bulb EIAJ-JB370AB03 or EIAJ-JB370AB04

Bulb contact designation IEC 67-III-2; EIA-J1-21
Base designation IEC 67-1-31a; EIA-B7-208

Basing 8 HR

Mass approx. 4 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage $\begin{array}{c} \text{max.} & 19 \text{ kV} \\ \text{min.} & 13 \text{ kV} \end{array}$ Grid 4 (focusing electrode) voltage -500 to +1000 V

Grid 2 voltage max. 700 V

Anode current

long-term average value max. $75 \,\mu\text{A}$ peak value max. $300 \,\mu\text{A}$ Cathode voltage, positive peak value max. $400 \,\text{V}$ Heater voltage $12 \,\text{V} \pm 10\%$ Cathode-to-heater voltage max. $100 \,\text{V}$

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 12 $V_{-5\%}^{+0\%}$

CIRCUIT DESIGN VALUES

Grid 4 current positive negative	max. max.	25 μΑ 25 μΑ
Grid 2 current positive		E A
negative	max. max.	5 μA 5 μA
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 M Ω
Impedance between cathode and heater	max.	0,1 M Ω
Grid 1 circuit resistance .	max.	1,5 M Ω
Grid 1 circuit impedance	max.	$0,5~\mathrm{M}\Omega$
TYPICAL OPERATING CONDITIONS		
Cathode drive; voltages specified with respect to grid 1		
Anode voltage	17 kV	

Grid drive; voltages specified with respect to cathode

Anode voltage 17 kV

Grid 4 (focusing electrode) voltage 0 to 400 V*

Grid 2 voltage 400 V

Grid 1 cut-off voltage 45 to 83 V**

RESOLUTION

Grid 2 voltage

Cathode cut-off voltage

The resolution is approx. 1500 lines. It is measured at the screen centre:

with shrinking raster method,

Grid 4 (focusing electrode) voltage

- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 259 mm x 194 mm,
- at $V_{02} = 700 \text{ V}$ and anode voltage = 17 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

0 to 400 V*

40 to 70 V**

400 V

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 259 \text{ mm} \times 194 \text{ mm}$ (landscape format): line parabola 300 V, field parabola 100 V; $H \times V = 194 \text{ mm} \times 259 \text{ mm}$ (portrait format): line parabola 200 V, field parabola 250 V.

^{*} Measured at screen centre on spot at anode current = 250 μ A (peak), anode voltage = 17 kV, grid 2 voltage = 400 V.

^{**} Visual extinction of focused raster.

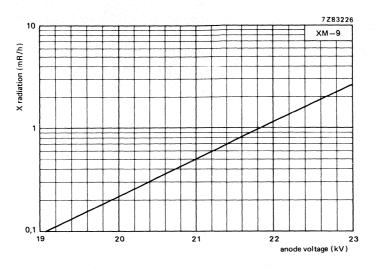


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

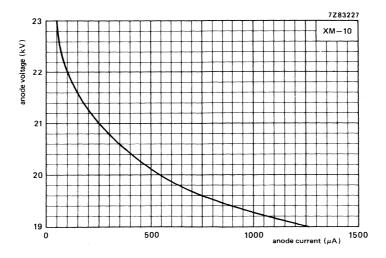


Fig. 2 0,5 mR/h isoexposure rate limit curve, according to JEDEC 94, measured according to TEPAC103A.

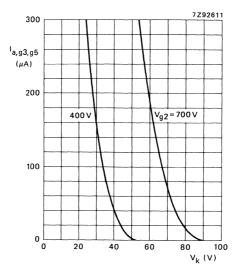


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5}$ = 17 kV.



Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 17 \text{ kV}$.

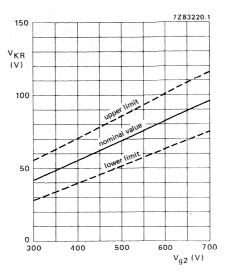


Fig. 5 Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,q3,q5} = 17 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$

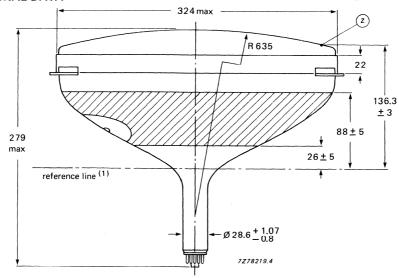
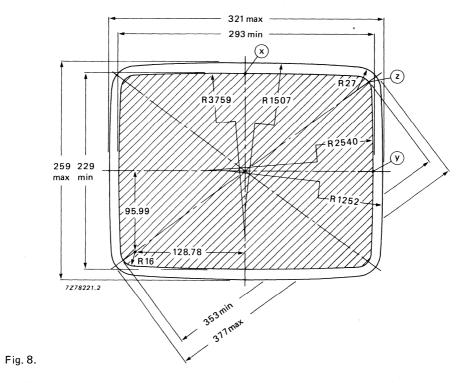
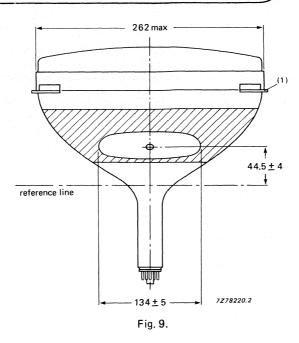


Fig. 6 Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 17 \; kV$.


$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$

DIMENSIONAL DATA


Dimensions in mm

→ Fig. 7.

(1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.

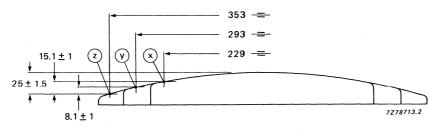


Fig. 10 Screen reference points.

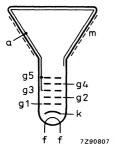


Fig. 12 Pin arrangement.

Fig. 11 Electrode configuration.

(1) The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.

Front view and lug dimensions of tube M38-346

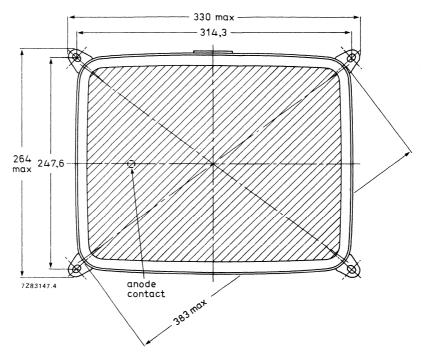


Fig. 13 Tube mounting dimensions; front view.

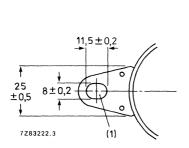


Fig. 14 Lug dimensions.

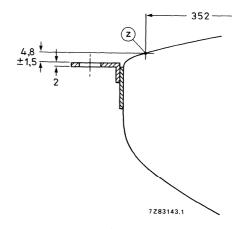


Fig. 15 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 314,3 mm x 247,6 mm.

Front view and lug dimensions of tube M38-348

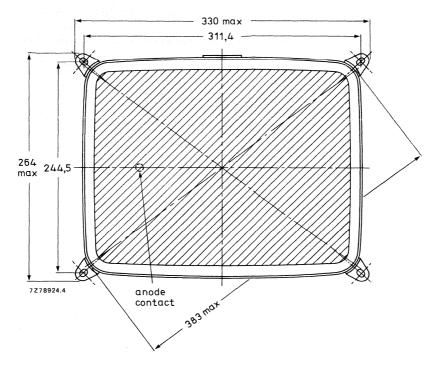


Fig. 16 Tube mounting dimensions; front view.

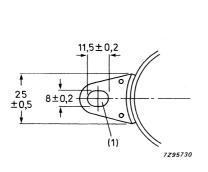


Fig. 17 Lug dimensions.

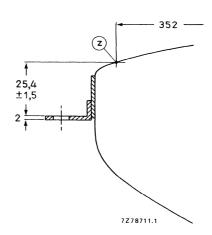


Fig. 18 Lug position.

(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 311,4 mm x 244,5 mm.

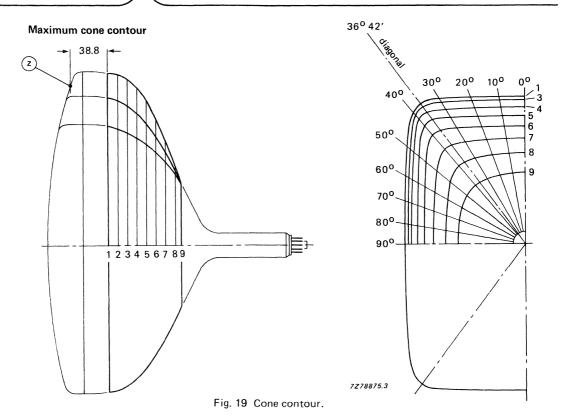


Table 1 Cone contour data

sec-	nom.				max. di	stance f	rom cer	itre				
tion	distance from section 1	00	100	200	300	diag.	400	50º	60º	700	800	90o
1	0	160,0	162,2	168,9	180,8	187,8	185,9	163,3	146,7	136,3	130,6	128 8
2	10	158,2	160,4	167,2	179,3	186,4	184,5	161,6	144,8	134,5	128,8	127,0
3	20	152,8	154,9	161,5	173,6	181,3	179,1	155,7	139,5	129,4	123,9	122,2
4	30	143,4	145,4	151,7	163,1	170,9	169,1	147,1	131,6	122,1	116,8	115,2
5	40	131,3	133,1	138,8	149,0	156,3	155,4	136,6	122,3	113,4	108,6	107,0
6	50	116,9	118,5	123,4	132,0	138,1	138,2	124,1	111,7	103,8	99,5	98,1
7	60	101,1	102,3	106,2	112,4	116,2	116,6	109,5	100,0	93,6	89,9	88,7
8	70	84,5	85,3	87,4	89,9	90,9	91,0	89,4	85,8	82,1	79,7	78,8
9	76,7	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3	67,3

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 1140 deflection angle
- 44 cm (17 in) face diagonal; rectangular glass
- 28,6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle	1140
Face diagonal	44 cm (17 in)
Overall length	max. 291 mm
Neck diameter	28,6 mm
Heating	6,3 V/240 mA
Quick heating cathode	with a typical tube a legible picture will appear within 5 s
Grid 2 voltage	400 V
Anode voltage	20 kV
Resolution	approx. 1500 lines

APPLICATION

This high resolution tube is for alphanumeric and graphic display applications, such as computer terminals, etc.

The tube can be supplied with different phosphors, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrostatic
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	approx. 114º approx. 104º approx. 90º
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. 4 pF max. 9 pF
Capacitance of external conductive coating to anode*	max. 1500 pF min. 800 pF
Capacitance of external conductive coating to anode**	max. 1300 pF min. 700 pF
Capacitance of anode to implosion protection hardware **	approx. 200 pF
Heater voltage	6,3 V
Heater current at 6,3 V	240 mA

OPTICAL DATA

Phosphor type see "High resolution monochrome

display tubes, General"

Light transmission at screen centre (normal tinted glass) approx. 48%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

291 mm Overall length max. Greatest dimensions of tube 441 mm diagonal width 377 mm 302 mm height Minimum useful screen dimensions (projected) diagonal 413 mm 346 mm horizontal axis 270 mm vertical axis area 912 cm² rimband Implosion protection Bulb **EIA J436A** IEC 67-III-2; EIA J1-21 Bulb contact designation IEC 67-1-31a; EIA B7-208 Base designation 8 HR Basing Mass approx. 6 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage	min.	15 kV
Grid 4 (focusing electrode) voltage	-500	to +1000 V
Grid 2 voltage	max.	700 V
Anode current long-term average value peak value	max. max.	75 μA 300 μA
Cathode voltage, positive peak value	max.	400 V
Heater voltage	6,3 V	± 10%*
Cathode-to-heater voltage	max.	100 V

23 kV

max

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 6,3 V $^{+\,0\%}_{-5\%}$

CIRCUIT DESIGN VALUES

Grid 4 current			
positive	max.	25	μΑ
negative	max.	25	μΑ
Grid 2 current			
positive	max.	5	μΑ
negative	max.	5	μΑ
MAXIMUM CIRCUIT VALUES			
Resistance between cathode and heater	max.	1,0	ΩM
Impedance between cathode and heater	max.	0,1	$M\Omega$
Grid 1 circuit resistance	max.	1,5	$M\Omega$
Grid 1 circuit impedance	max.	0,5	$M\Omega$
TYPICAL OPERATING CONDITIONS			
Cathode drive; voltages specified with respect to grid 1			
Anode voltage	20 kV		

Grid drive; voltages specified with respect to cathode

Anode voltage 20 kV Grid 4 (focusing electrode) voltage 0 to 400 V* Grid 2 voltage 400 V Grid 1 cut-off voltage 45 to 83 V**

RESOLUTION

Grid 2 voltage

Cathode cut-off voltage

The resolution is approx. 1500 lines. It is measured at the screen centre:

with shrinking raster method,

Grid 4 (focusing electrode) voltage

- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 304 mm x 228 mm,
- at V_{q2} = 700 V and anode voltage = 20 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

0 to 400 V* 400 V

40 to 70 V**

* Measured at screen centre on spot at anode current = $250 \mu A$ (peak), anode voltage = 20 kV, grid 2 voltage = 400 V.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 304 \text{ mm} \times 228 \text{ mm}$ (landscape format): line parabola 300 V, field parabola 100 V.

** Visual extinction of focused raster.

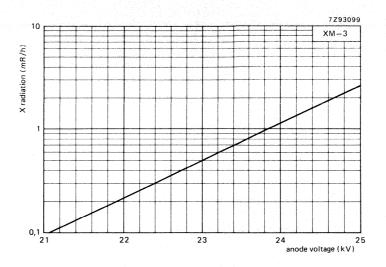


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

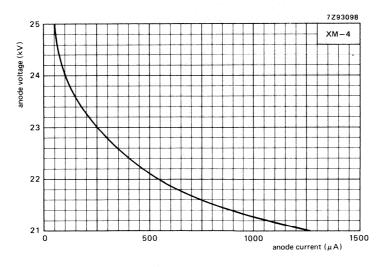


Fig. 2 0,5 mR/h isoexposure rate limit curve, according to JEDEC 94, measured according to TEPAC103A.

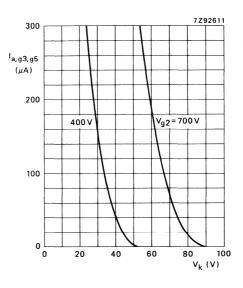


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 20 \text{ kV}$.

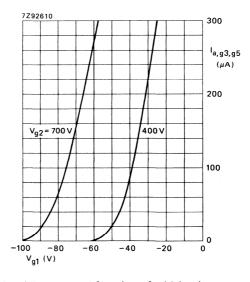


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 20 \text{ kV}$.

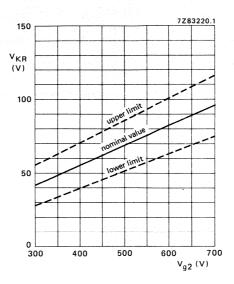


Fig. 5 Limits of cathode raster cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,q3,q5} = 20 \text{ kV}$.

$$\frac{\Delta V_{KR}}{\Delta V_{a,q3,q5}} = 0.15 \times 10^{-3}$$
.

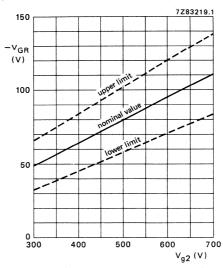
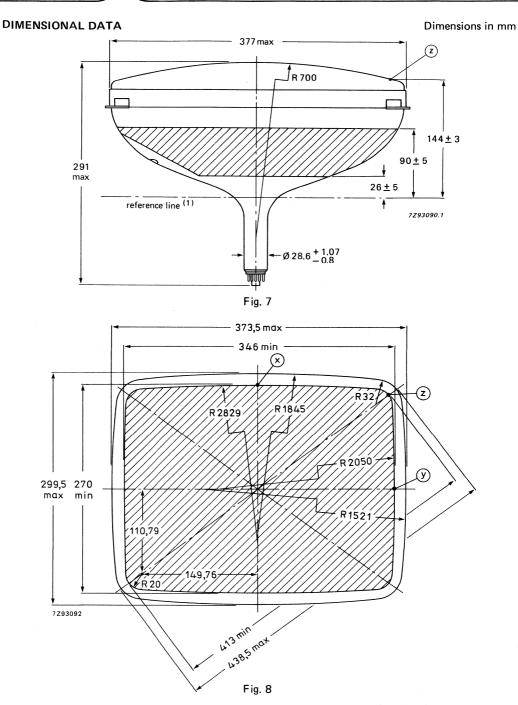



Fig. 6 Limits of grid 1 raster cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5} = 20 \text{ kV}$.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

(1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.

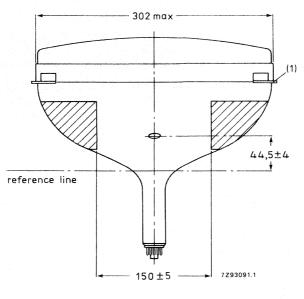


Fig. 9

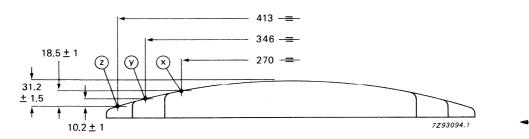


Fig. 10 Screen reference points.

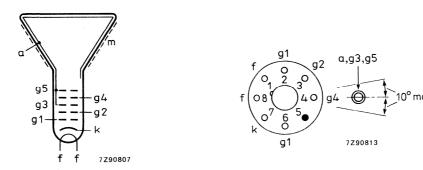


Fig. 11 Electrode configuration.

Fig. 12 Pin arrangement.

(1) The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.

Front view and lug dimensions

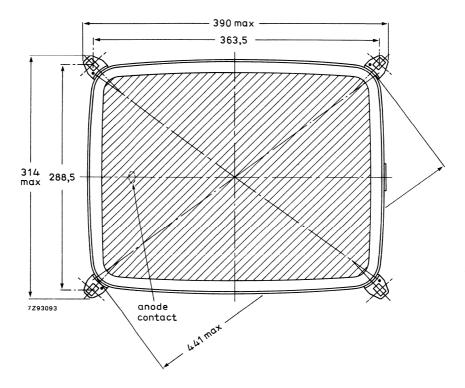
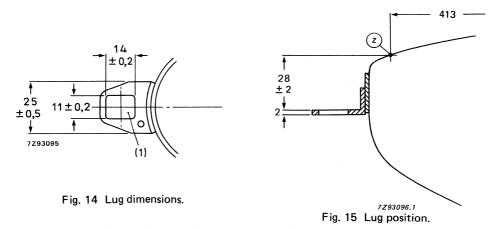



Fig. 13 Tube mounting dimensions; front view.

(1) The mounting screws in the cabinet must be situated inside a circle of 7,5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 363,5 mm x 288,5 mm.

Maximum cone contour

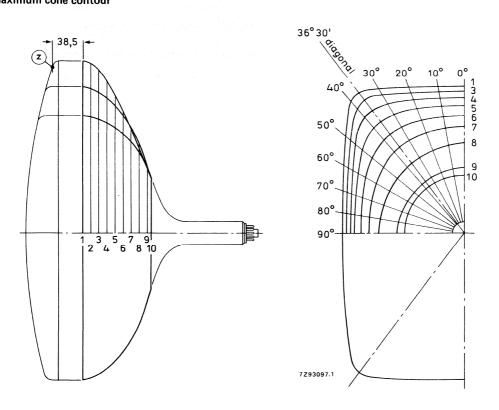


Fig. 16 Cone contour.

Table 1 Cone contour data.

sec-	nom. distance		maximum distance from centre									
tion	from section 1	0o	10 ⁰	20°	30°	diag.	40°	50°	60°	70°	80°	90°
1	0	184,30	186,83	194,73	209,03	217,15	214,63	187,58	168,13	156,09	149,50	147,40
2	10	183,80	186,32	194,20	208,43	216,54	213,94	187,05	167,67	155,65	149,08	146,98
3	20	180,84	183,29	190,91	204,44	211,90	209,50	184,37	165,42	153,62	147,15	145,09
4	30	174,11	176,34	183,17	194,20	198,87	196,98	177,67	160,30	149,18	143,04	141,08
5	40	164,91	166,81	172,30	179,31	180,94	179,45	167,16	153,19	143,33	137,76	135,96
6	50	153,13	154,62	158,32	161,71	161,74	160,61	153,27	143,62	135,70	130,89	129,30
7	60	139,16	140,03	141,57	142,18	141,40	140,51	136,34	130,86	125,72	122,16	120,87
8	70	122,37	122,17	121,41	120,06	118,91	118,22	116,10	113,94	112,02	110,62	110,05
9	80	94,64	93,90	92,73	91,60	91,01	90,75	90,28	90,23	90,58	91,22	91,76
10	89,34	61,83	61,83	61,83	61,83	61,83	61,83	61,83	61,83	61,83	61,83	61,83

HIGH RESOLUTION MONOCHROME DISPLAY TUBE

- For Data Graphic Displays
- 1140 deflection angle
- 50 cm (20 in) face diagonal; rectangular glass
- 28,6 mm neck diameter
- Integral implosion protection

QUICK REFERENCE DATA

Deflection angle		1140
Face diagonal		50 cm (20 in)
Overall length		max. 319 mm
Neck diameter		28,6 mm
Heating		6,3 V/240 mA
Quick heating cathode		with a typical tube a legible picture will appear within 5 s
Grid 2 voltage		400 V
Anode voltage		20 kV
Resolution		approx. 1400 lines

APPLICATION

This high resolution tube is for alphanumeric and graphic display applications, such as computer terminals, etc.

The tube can be supplied with different phosphors, see "High resolution monochrome display tubes, General".

ELECTRICAL DATA

Focusing method	electrost	tatic	
Deflection method	magneti	C	
Deflection angles diagonal horizontal vertical	approx. approx. approx.	114º 104º 90º	
Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes	max. max.	4 pF 9 pF	
Capacitance of external conductive coating to anode*	max. min.	1875 pF 1225 pF	
Capacitance of external conductive coating to anode**	max. min.	1500 pF 1000 pF	
Capacitance of anode to implosion protection hardware**	approx.	250 pF	
Heater voltage	6,3 V		
Heater current at 6,3 V	240 mA	\	
OPTICAL DATA			
	Deflection method Deflection angles diagonal horizontal vertical Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes Capacitance of external conductive coating to anode* Capacitance of external conductive coating to anode** Capacitance of anode to implosion protection hardware** Heater voltage Heater current at 6,3 V	Deflection method Deflection angles diagonal horizontal vertical Direct interelectrode capacitances cathode to all other electrodes grid 1 to all other electrodes Capacitance of external conductive coating to anode* Capacitance of external conductive coating to anode** Capacitance of anode to implosion protection hardware** Heater voltage Heater current at 6,3 V magnetic approx. max. max. min. capacitance of external conductive coating to anode** Approx. Heater current at 6,3 V 240 mA	Deflection method magnetic Deflection angles diagonal approx. 1140 horizontal approx. 1040 vertical approx. 900 Direct interelectrode capacitances cathode to all other electrodes max. 4 pF grid 1 to all other electrodes max. 9 pF Capacitance of external conductive coating to anode* max. 1875 pF min. 1225 pF Capacitance of external conductive coating to anode** approx. 250 pF Capacitance of anode to implosion protection hardware** approx. 250 pF Heater voltage 6,3 V Heater current at 6,3 V

Phosphor type

see "High resolution monochrome display tubes, General"

Light transmission at screen centre tube with normal tinted glass tube with dark tinted glass

approx. 46% approx. 32%

RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

^{*} Implosion protection hardware connected to external conductive coating.

^{**} Implosion protection hardware not connected to external conductive coating.

MECHANICAL DATA (see also the figures under Dimensional Data)

319 mm Overall length max. Greatest dimensions of tube diagonal 504,5 mm width 430,5 mm 346,5 mm height Minimum useful screen dimensions (projected) 473 diagonal mm horizontal axis 394 mm vertical axis 308 mm area 1187 cm² Implosion protection rimband Bulb EIA J500A IEC 67-III-2; EIA J1-21 Bulb contact designation Base designation IEC 67-1-31a; EIA B7-208 Basing 8 HR Mass approx. 8,5 kg

RATINGS (Absolute Maximum System)

Unless otherwise specified voltage values are positive and measured with respect to grid 1.

Anode voltage	max. 23 kV min. 16 kV
Grid 4 (focusing electrode) voltage	-500 to +1000 V
Grid 2 voltage	max. 700 V
Anode current long-term average value peak value	max. 75 μA max. 300 μA
Cathode voltage, positive peak value	max. 400 V
Heater voltage	6,3 V ± 10%*
Cathode-to-heater voltage	max. 100 V

^{*} For maximum cathode life it is recommended that the heater supply be regulated at 6,3 V $_{_{_{_{_{_{_{_{_{1}}}}}}}}^{+0\%}}$

Grid 4 current

CIRCUIT DESIGN VALUES

positive negative	max. max.	25 μA 25 μA
Grid 2 current positive negative	max.	5 μA 5 μA
MAXIMUM CIRCUIT VALUES		
Resistance between cathode and heater	max.	1,0 ΜΩ
Impedance between cathode and heater	max.	0,1 MΩ
Grid 1 circuit resistance	max.	1,5 ΜΩ

max. $0.5 M\Omega$

TYPICAL OPERATING CONDITIONS

Grid 1 circuit impedance

Cathode drive; voltages specified with respect to grid 1

Anode voltage	20 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Cathode cut-off voltage	40 to 70 V**
Grid drive; voltages specified with respect to cathode	
Anode voltage	20 kV
Grid 4 (focusing electrode) voltage	0 to 400 V*
Grid 2 voltage	400 V
Grid 1 cut-off voltage	45 to 83 V**

RESOLUTION

The resolution is approx. 1400 lines. It is measured at the screen centre:

- · with shrinking raster method,
- at light output 68,5 cd/m² (20 foot lambert) and raster dimensions 348 mm x 261 mm,
- at V_{q2} = 700 V and anode voltage = 20 kV,
- with phosphor type W (WW),
- with normal tinted face glass, without anti-glare treatment of screen surface.

X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

Dynamic focus (only for optimization): Typical correction for a video field of $H \times V = 348 \text{ mm} \times 261 \text{ mm}$ (landscape format): line parabola 300 V, field parabola 100 V.

** Visual extinction of focused raster.

^{*} Measured at screen centre on spot at anode current = $250 \mu A$ (peak), anode voltage = 20 kV, grid 2 voltage = 400 V.

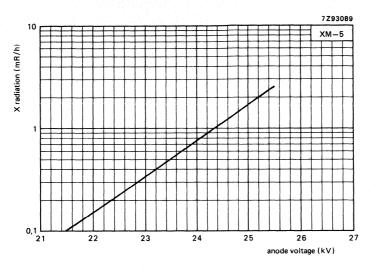


Fig. 1 X-radiation limit curve according to JEDEC 94, at a constant anode current of 250 μ A, measured according to TEPAC103A.

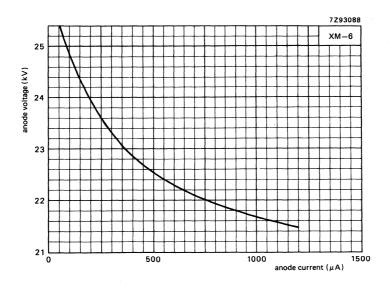


Fig. 2 0,5 mR/h isoexposure rate limit curve, according to JEDEC 94, measured according to TEPAX103A.

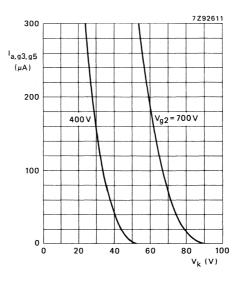


Fig. 3 Anode current as a function of cathode voltage. Cathode drive; $V_{a,g3,g5} = 20 \text{ kV}$.

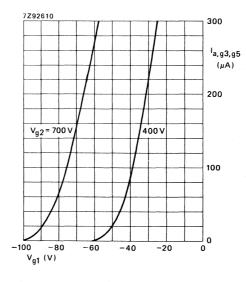


Fig. 4 Anode current as a function of grid 1 voltage. Grid drive; $V_{a,g3,g5} = 20 \text{ kV}$.

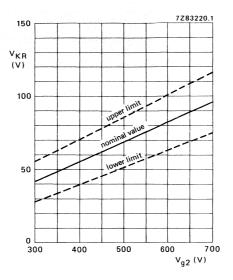


Fig. 5 Limits of cathode raster cut-off voltage as a function of grid 2 voltage. Cathode drive; $V_{a,93,95}$ = 20 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}.$$

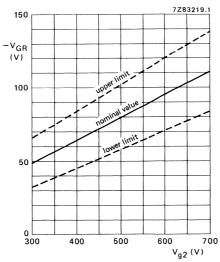


Fig. 6 Limits of grid 1 raster cut-off voltage as a function of grid 2 voltage. Grid drive; $V_{a,g3,g5}$ = 20 kV.

$$\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.15 \times 10^{-3}$$
.

DIMENSIONAL DATA

Dimensions in mm

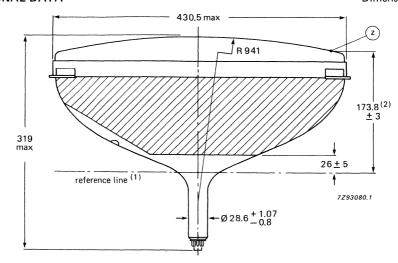
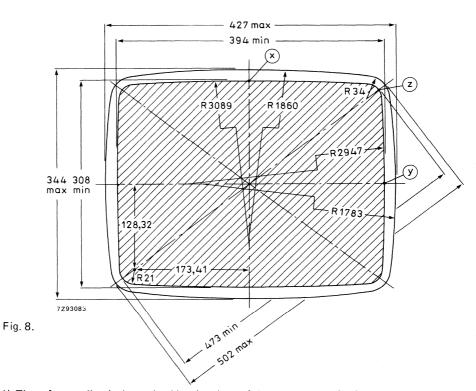
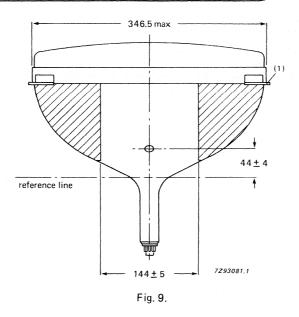




Fig. 7

- (1) The reference line is determined by the plane of the upper edge of reference line gauge C when the gauge is resting on the cone.
- (2) If NEG type, this value changes to 170,3 \pm 3,5.

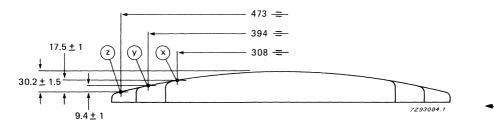


Fig. 10 Screen reference points.

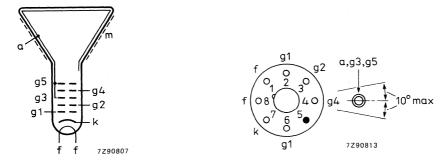


Fig. 11 Electrode configuration.

Fig. 12 Pin arrangement.

(1) The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.

Front view and lug dimensions

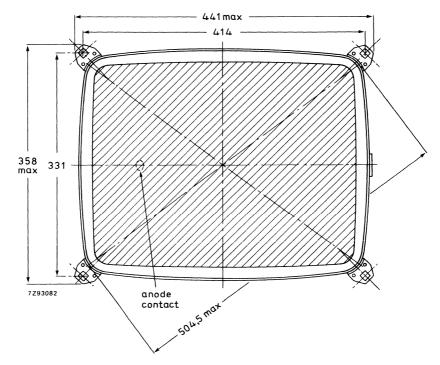
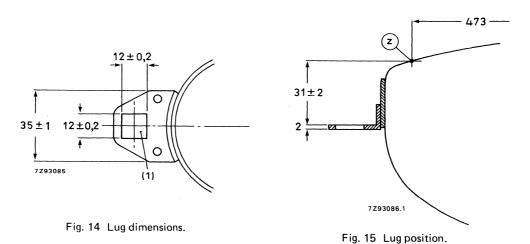



Fig. 13 Tube mounting dimensions; front view.

(1) The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 414 mm x 331 mm.

Maximum cone contour



Fig. 16 Cone contour.

Table 1 Cone contour data

sec- tion	nom. distance from section 1	maximum distance from centre										
		00	10 ⁰	20°	30°	diag.	40°	50°	60°	70 ⁰	80°	90°
1	0	212,40	215,27	224,24	240,47	250,00	246,96	215,59	193,30	179,48	171,91	169,50
2	10	211,37	214,23	223,15	239,25	249,13	246,39	215,32	192,88	179,00	171,41	168,99
3	20	208,00	210,74	219,25	234,40	244,05	241,65	212,73	190,50	176,69	169,13	166,73
4	30	203,99	206,43	213,93	226,89	233,79	230,99	207,33	186,52	173,13	165,75	163,40
5	40	198,33	200,43	206,81	217,05	220,83	218,32	199,70	181,12	168,49	161,41	159,14
6	50	190,32	192,10	197,40	204,53	205,72	203,55	189,36	173,85	162,55	156,00	153,87
7	60	179,54	181,01	185,01	188,72	187,90	185,85	175,57	163,90	154,70	149,06	147,16
8	70	165,75	166,89	169,39	170,43	168,81	167,08	159,85	151,68	144,83	140,38	138,80
9	80	147,99	148,83	150,23	150,21	148,78	147,54	142,72	137,24	132,45	129,19	127,97
10	90	124,88	125,48	126,40	126,58	126,02	125,48	123,25	120,47	117,83	115,89	115,12
11	100	101,31	100,91	99,98	98,75	97,88	97,42	96,16	95,12	94,37	93,97	93,88
12	110	74,28	74,01	73,54	73,02	72,70	72,54	72,18	71,97	71,92	72,00	72,11
13	113,36	64,18	64,12	64,01	63,89	63,82	63,78	63,70	63,66	63,65	63,68	63,71

DEFLECTION UNITS FOR MONOCHROME DATA GRAPHIC DISPLAY TUBES

DEFLECTION UNIT

- For Data Graphic Displays
- For use with high resolution 47 cm (20 in) and 41 cm (17 in)/1100 monochrome CRTs
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M47EAA and M41EAA
- Specially made for high line frequencies (up to 70 kHz)
- Electrical data given is for M47EAA

QUICK REFERENCE DATA

Deflection angle	110°
Neck diameter of CRT	28,6 mm
Screen diagonal of CRT	47/41 cm
Display format	landscape
Line deflection current for raster scan, at 17,5 kV	13,1 A _(p-p)
Inductance of line coils, parallel connected	72 μΗ
Field deflection current for raster scan, at 17,5 kV	0,87 A _(p-p)
Resistance of field coils, series connected	13,5 Ω

APPLICATION

This deflection unit is for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. It is developed in conjunction with the high resolution display tube M47EAA to provide minimum deflection defocusing and good raster geometry without additional adjustments. Deflection unit AT1037/01 is for displays in horizontal (landscape, TV) format.

The AT1037/01 displays the same very high performance when used in conjunction with the M41EAA high resolution display tube.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 70 kHz, thanks to the use of Litze wire in the line coils. At this line frequency the temperature rise of the deflection unit is less than 35°C, the maximum allowed average copper temperature of the unit is 95°C, hence, the environmental temperature must not exceed 65°C. Where the circuitry and cabinet design are such than an operating environmental temperature of less than 65°C is attained, the maximum permissible line frequency may be higher than the 70 kHz specified.

The following associated wound components are available for use in line time base circuits:

AT2076/84 — universal line output transformer;

AT4042/33A - linearity control unit (parallel connection);

AT4042/08A — linearity control unit (series connection);

AT4043/64 — line driver transformer;

AT4043/29 - DC shift transformer;

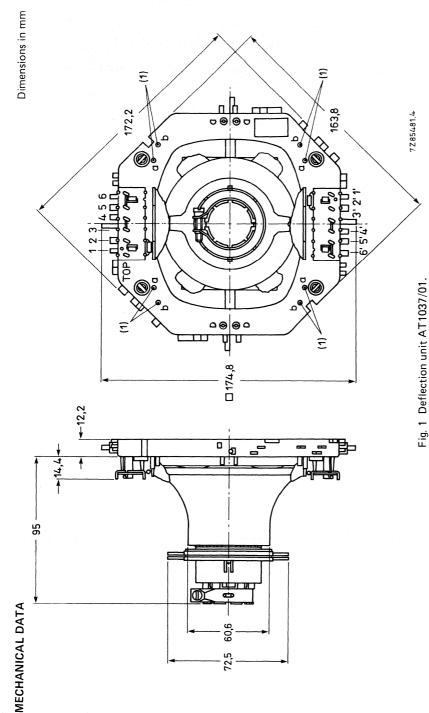
AT4044/35 – amplitude control unit.

A universal monitor design (C64L) has been developed, which is based on AT1037 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.


The unit meets the self-extinguishing requirements of CSA, IEC and UL.

The top of the unit is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.75 to 0.90 Nm.

rig. I Deliection dint Al 1937/91.

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1). The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2.

* Catalogue number 3122 134 92300.

ELECTRICAL DATA

Line deflection coils		
inductance		72 μH ± 5%
resistance		$0.15 \Omega \pm 5\%$
line deflection current for		
raster scan, at 17,5 kV		13,1 A _(p-p) ± 5%
raster scan		348 mm
Field deflection coils		
inductance		12,2 mH ± 5%
resistance		13,5 Ω ± 5%
field deflection current for		
raster scan, at 17,5 kV		0,87 A _(p-p) ± 5%
raster scan		261 mm
Maximum permissible DC voltag	e between line and field coils	3000 V
Maximum permissible DC voltag	300 V	
Coupling between line and field	≤ 1/100	

Note: The values apply at an ambient temperature of 23 °C

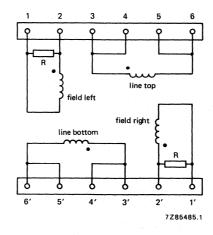


Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with \bullet .

Geometric distortion, without raster correction and centring magnets.

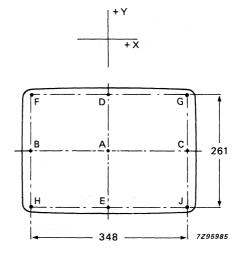


Fig. 3.

Obliquity

 $\begin{aligned} |\text{Fy-Gy}| &\leqslant 3,0 \text{ mm} \\ |\text{Gx-Jx}| &\leqslant 3,0 \text{ mm} \\ |\text{Jy-Hy}| &\leqslant 3,0 \text{ mm} \\ |\text{Hx-Fx}| &\leqslant 3,0 \text{ mm} \\ |\text{Dx}| \text{ and } |\text{Ex}| &\leqslant 0,8 \text{ mm} \\ |\text{By}| \text{ and } |\text{Cy}| &\leqslant 0,5 \text{ mm} \end{aligned}$

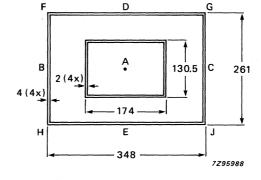


Fig. 4 The edges of the displayed raster should fall within the two rectangles.

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002.

Mean spot dimension is related to the spot at point A.

Mean spot size = $\frac{1+s}{2}$ Where; 1 = longest spot axis s = shortest spot axis

Measuring conditions: $V_{ht} = 17.5 \text{ kV}$

 $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu \text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + $15\% \pm 20\%$ spot size D and E = spot size A + $15\% \pm 20\%$ spot size F,G,H and J = spot size A + $25\% \pm 20\%$

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

95 °C

Maximum possible temperature rise (ΔT) as a result of coil losses at 70 kHz

35 °C

Storage temperature range

-25 to + 95 °C

Flame retarding Flammability

according to UL1413 according to UL94,

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock IEC 68-2-27, test Ea;

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold IEC 68-2-1, test Ab;

96 h, -25 °C.

Dry heat IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state

IEC 68-2-3, test Ca, 21 days.

Change of temperature IEC 68-2-14, test Nb;

5 cycles of 2 h at -25 °C and 2 h at +95 °C,

duration of one cycle 5 h.

AT1037/01

BEAM CENTRING

Deflection unit

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

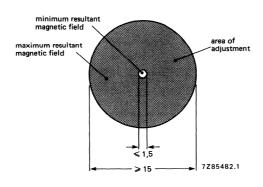


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

DEFLECTION UNIT

- For Data Graphic Displays
- For use with high resolution 47 cm (20 in) and 41 cm (17 in)/1100 monochrome CRTs
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M47EAA and M41EAA
- Specially made for high line frequencies (up to 70 kHz)
- Electrical data given is for M47EAA

QUICK REFERENCE DATA

Deflection angle	110°
Neck diameter of CRT	28,6 mm
Screen diagonal of CRT	47 cm
Display format	landscape
Line deflection current for raster scan, at 17 kV	10,73 A (p-p)
Inductance of line coils, parallel connected	105,6 μΗ
Field deflection current for raster scan, at 17 kV	1,33 A (p-p)
Resistance of field coils, series connected	5,70 Ω

APPLICATION

This deflection unit is for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. It is developed in conjunction with the high resolution display tube M47EAA to provide minimum deflection defocusing and good raster geometry without additional adjustments.

The AT1037/11 displays the same very high performance when used in conjunction with the M41EAA high resolution display tube.

Deflection unit AT1037/11 is for displays in horizontal (landscape, TV) format.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 70 kHz, thanks to the use of Litze wire in the line coils. At this line frequency the temperature rise of the deflection unit is less than 35° C, the maximum allowed average copper temperature of the unit is 95° C, hence, the environmental temperature must not exceed 65° C. Where the circuitry and cabinet design are such than an operating environmental temperature of less than 65° C is attained, the maximum permissible line frequency may be higher than the 70 kHz specified.

3322 603 00820

The following associated wound components are available for use in line time base circuits:

AT2076/84 — universal line output transformer;

AT4042/33A — linearity control unit (parallel connection);

AT4042/08A - linearity control unit (series connection);

AT4043/64 - line driver transformer;

AT4043/29 - DC shift transformer;

AT4044/35 - amplitude control unit.

A universal monitor design (C64L) has been developed, which is based on AT1037 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.

The unit meets the self-extinguishing requirements of CSA, IEC and UL.

The top of the unit is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on <u>force</u> on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0,75 to 0,90 Nm.

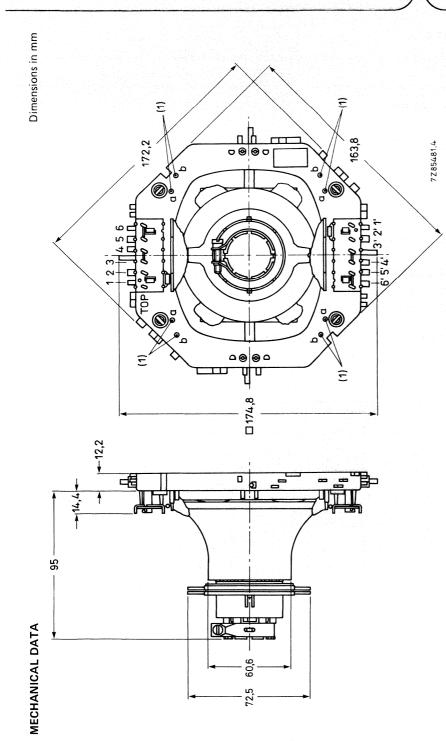


Fig. 1 Deflection unit AT1037/11.

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1). The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2.

* Catalogue number 3122 134 92300.

ELECTRICAL DATA

Line deflection coils		
inductance		105,6 μH ± 5%
resistance		$0.21 \Omega \pm 5\%$
line deflection current for		
raster scan, at 17 kV		10,73 A (p-p) ± 5%
raster scan		348 mm
Field deflection coils		
inductance		5,04 mH ± 5%
resistance		$5.7 \Omega \pm 5\%$
field deflection current for		
raster scan, at 17 kV		$1.33 \text{ A (p-p)} \pm 5\%$
raster scan		261 mm
Maximum permissible DC volta	ge between line and field coils	3000 V
Maximum permissible DC volta	ge between field coil and yoke ring	300 V
Coupling between line and field coils, at 1 V, 500 Hz		≤ 1/100

Note: The values apply at an ambient temperature of 23 °C

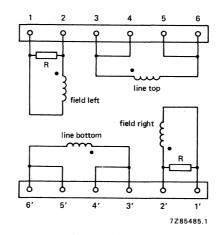
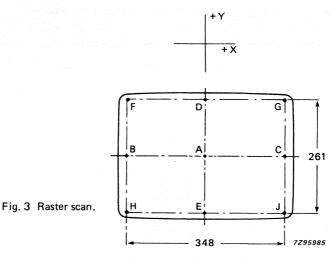
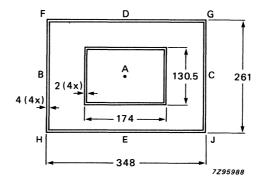



Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with ullet.


Geometric distortion, without raster correction and centring magnets.

Obliquity

$$\begin{split} |\text{Fy-Gy}| &\leqslant 3,5 \text{ mm} \\ |\text{Gx-Jx}| &\leqslant 3,5 \text{ mm} \\ |\text{Jy-Hy}| &\leqslant 3,5 \text{ mm} \\ |\text{Hx-Fx}| &\leqslant 3,5 \text{ mm} \\ |\text{Dx}| \text{ and } |\text{Ex}| &\leqslant 0,8 \text{ mm} \\ |\text{By}| \text{ and } |\text{Cy}| &\leqslant 0,5 \text{ mm} \end{split}$$

Fig. 4 The edges of the displayed raster should fall within the two rectangles.

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002.

Mean spot dimension is related to the spot at point A.

Mean spot size = $\frac{1+s}{2}$ Where; 1 = 1

1 = longest spot axis s = shortest spot axis

Measuring conditions: $V_{ht} = 17 \text{ kV}$

 $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu \text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + $15\% \pm 20\%$ spot size D and E = spot size A + $15\% \pm 20\%$ spot size F,G,H and J = spot size A + $25\% \pm 20\%$

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

95 °C

Maximum possible temperature rise (ΔT) as a result of coil losses at 70 kHz

-25 to +95 °C

Storage temperature range

according to UL1413

Flame retarding Flammability

according to UL94.

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration

IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump

IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock

IEC 68-2-27, test Ea;

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold

IEC 68-2-1, test Ab;

96 h. -25 °C.

Dry heat

IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat

IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state

IEC 68-2-3, test Ca, 21 days.

Change of temperature

IEC 68-2-14, test Nb;

5 cycles of 2 h at -25 °C and 2 h at +95 °C,

duration of one cycle 5 h.

BEAM CENTRING

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

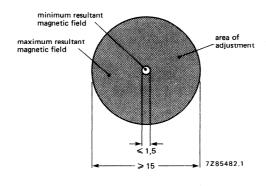


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

DEFLECTION UNITS

- For Data Graphic Displays
- For use with high resolution 38 cm (15 in)/1100 monochrome CRTs
- · Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M38-328
- Separate types for landscape and portrait formats

QUICK REFERENCE DATA

	AT1039/00	AT1039/01
Deflection angle	110°	110°
Neck diameter of CRT	28,6 mm	28,6 mm
Screen diagonal of CRT	38 cm	38 cm
Display format	portrait	landscape
Line deflection current for raster scan, at 17 kV	5,60 A _(p-p)	7,55 A _(p-p)
Inductance of line coils, parallel connected	225 μΗ	206 μΗ
Field deflection current for raster scan, at 17 kV	1,15 A _(p-p)	0,90 A _(p-p)
Resistance of field coils, series connected	10,2 Ω	10,5 Ω

APPLICATION

These deflection units are for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. They are developed in conjunction with the high resolution display tube M38-328 to provide minimum deflection defocusing and good raster geometry without additional adjustments. Deflection unit AT1039/00 is for displays in vertical (portrait) format, AT1039/01 for displays in horizontal (landscape, TV) format.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 50 kHz in landscape format and approx. 70 kHz in portrait format. At this line frequency the temperature rise of the deflection unit is less than 35 °C, the maximum allowed average copper temperature of the unit is 95 °C, hence, the environmental temperature must not exceed 65 °C. Where the circuitry and cabinet design are such that an operating environmental temperature of less than 65 °C is attained, the maximum permissible line frequency may be higher than the 50 kHz/70 kHz specified.

To provide some choice of impedances, the termination of the coils are brought out permitting either series or parallel connections.

When the coils are connected in parallel it is possible to provide scan at the highest frequency using existing devices. The impedance of the field coils (series connected) is adjusted for operation with integrated circuits (e.g. TDA2653A).

The following associated wound components are available for use in line time base circuits:

AT2076/84 — universal line output transformer;

AT4042/33A — linearity control unit (parallel connection);

AT4042/08A — linearity control unit (series connection);

AT4043/64 — line driver transformer;

AT4043/29 - d.c. shift transformer;

AT4044/35 — amplitude control unit.

A universal monitor design (C64) has been developed, which is based on AT1039 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.

The units meet the self-extinguishing requirements of CSA, IEC and UL. The top of the units is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0,75 to 0,90 Nm.

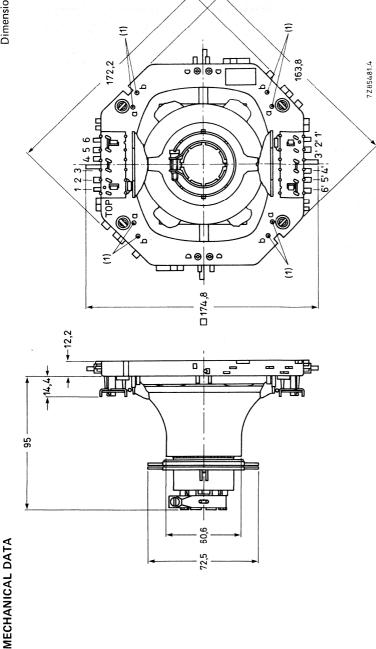


Fig. 1 Deflection units AT1039/00 and AT1039/01.

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1); posts a to be used for AT1039/00, posts b for AT1039/01

The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2.

* Catalogue number 3122 134 92300.

ELECTRICAL DATA

	AT1039/00		AT1039/01	
	parallel connected	series connected	parallel connected	series connected
Line deflection coils				
inductance resistance line deflection current.	225 μH ± 5% 0,39 Ω ± 5%	900 μH ± 5% 1,56 Ω ± 5%	206 μH ± 5% 0,38 Ω ± 5%	824 μH ± 5% 1,52 Ω ± 5%
for raster scan, at 17 kV raster scan	5,60 A(p-p) ± 5% 194 mm	2,80 A _(p-p) ± 5% 194 mm	7,55 A _(p-p) ± 5% 259 mm	3,78 A _(p-p) ± 5% 259 mm
Field deflection coils		S. C.		
inductance resistance field deflection current,	2,30 mH ± 5% 2,55 Ω ± 5%	9,18 mH ± 5% 10,2 Ω ± 5%	2,40 mH ± 5% 2,63 Ω ± 5%	9,60 mH ± 5% 10,5 Ω ± 5%
for raster scan, at 17 kV raster scan	2,30 A _(p-p) ± 5% 259 mm	1,15 A _(p-p) ± 5% 259 mm	1,8 A(_{p-p)} ± 5% 194 mm	0,90 A _(p-p) ± 5% 194 mm

Maximum permissible DC voltage between line and field coils 3000 V Maximum permissible DC voltage between field coil and yoke ring 300 V Coupling between line and field coils, at 1 V, 500 Hz $\leq 1/100$

Note: The values apply at an ambient temperature of 23 °C.

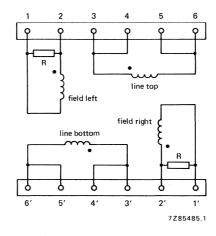


Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with ullet.

Interconnections

	terminals to be	output terminals*	
	interconnected	live	neutral
Line deflection coils			
	3, 4 to 5', 6'		
parallel connection	and 3', 4' to 5, 6	3, <u>4</u> 5′, 6′	3', <u>4'</u> , 5, 6
series connection	3, 4 to 3', 4'	5′, 6′	5 , 6
Field deflection coils			
	1 to 2'		
parallel connection	and 1' to 2	<u>1', 2</u>	1, <u>2'</u>
series connection	2 to 2'	1	1

Geometric distortion, without raster correction and centring magnets.

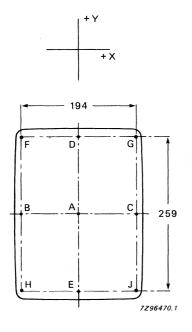
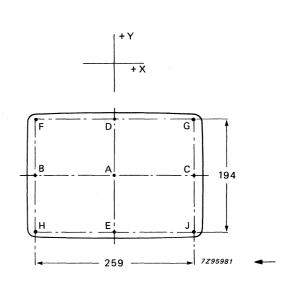
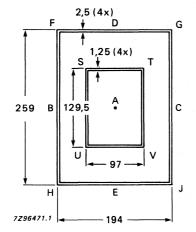
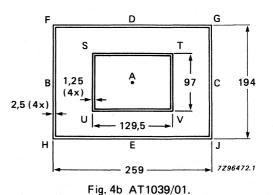


Fig. 3a AT1039/00.


Fig. 3b AT1039/01.

^{*} Terminals which are most convenient to be used as output terminals are underlined.

Obliquity

 $\begin{aligned} |\mathsf{Fy\text{-}Gy}| \leqslant 2,0 \ \mathsf{mm} \\ |\mathsf{Gx\text{-}Jx}| \leqslant 2,0 \ \mathsf{mm} \\ |\mathsf{Jy\text{-}Hy}| \leqslant 2,0 \ \mathsf{mm} \\ |\mathsf{Hx\text{-}Fx}| \leqslant 2,0 \ \mathsf{mm} \\ |\mathsf{Dx}|\mathsf{and}|\mathsf{Ex}| \leqslant 0.5 \ \mathsf{mm} \\ |\mathsf{By}|\mathsf{and}|\mathsf{Cy}| \leqslant 0.5 \ \mathsf{mm} \end{aligned}$

Note: The edges of the displayed raster should fall within the two rectangles.

Fig. 4a AT1039/00.

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002. Mean spot dimension is related to the spot at point A.

Mean spot size = $\frac{1+s}{2}$ Where; 1 = longest spot axis s = shortest spot axis

Measuring conditions: $V_{ht} = 17 \text{ kV}$

 $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu \text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + $15\% \pm 20\%$ spot size D and E = spot size A + $15\% \pm 20\%$ spot size F,G,H and J = spot size A + $25\% \pm 20\%$

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

Maximum possible temperature rise (ΔT) as a result of coil losses at

50 kHz and 70 kHz respectively

Storage temperature range

Flame retarding

Flammability

95 °C

35 °C

-25 to +95 °C

according to UL1413

according to UL94, category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock IEC 68-2-27. test Ea;

11 ms, half-sine pulse shape, 350 m/s 2 , 3 x 6 directions.

Cold IEC 68-2-1, test Ab;

96 h, -25 °C.

Dry heat IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state IEC

IEC 68-2-3, test Ca, 21 days.

Change of temperature IEC 68-2-14, test Nb;

5 cycles of 2 h at --25 °C and 2 h at + 95 °C,

duration of one cycle 5 h.

BEAM CENTRING

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity, and after correct placing of displayed information.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

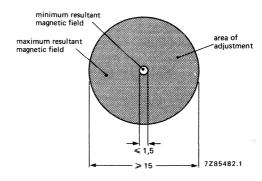


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

DEFLECTION UNIT

- For Data Graphic Displays
- For use with high resolution 31 cm (12 in)/1100 monochrome CRTs
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M31-326

QUICK REFERENCE DATA

Deflection angle	110º
Neck diameter of CRT	28,6 mm
Screen diagonal of CRT	31 cm
Display format	landscape
Line deflection current for full scan, at 17 kV	7,34 A (p-p)
Inductance of line coils, parallel connected	228,5 μH
Field deflection current for full scan, at 17 kV	1,03 A (p-p)
Resistance of field coils, series connected	10,2 Ω

APPLICATION

This deflection unit is for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. It is developed in conjunction with the high resolution display tube M31-326 to provide minimum deflection defocusing and good raster geometry without additional adjustments.

Deflection unit AT1039/03 is for display in horizontal (landscape, TV) format. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 50 kHz. At this line frequency the temperature rise of the deflection unit is less than 35 °C, the maximum allowed average copper temperature of the unit is 95 °C, hence, the environmental temperature must not exceed 65 °C. Where the circuitry and cabinet design are such that an operating environmental temperature of less than 65 °C is attained, the maximum permissible line frequency may be higher than the 50 kHz specified.

The following associated wound components are available for use in line time base circuits:

AT2076/84 – universal line output transformer;

AT4042/33A - linearity control unit (parallel connection);

AT4042/08A — linearity control unit (series connection);

AT4043/64 – line driver transformer;

AT4043/29 – DC shift transformer; AT4044/35 – amplitude control unit.

A universal monitor design (C64) has been developed, which is based on AT1039 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.

The unit meets the self-extinguishing requirements of CSA, IEC and UL.

The top of the unit is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0,75 to 0,90 Nm.

MECHANICAL DATA

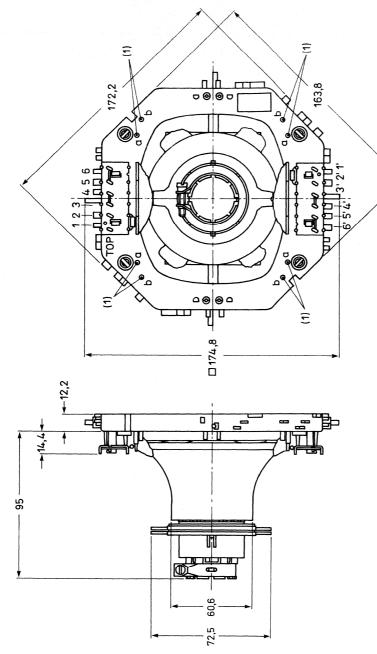


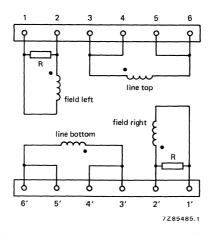
Fig.1 Deflection unit AT1039/03.

7285481.4

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1). The unit has solder pins for connection. The pin numbering in Fig.1 corresponds to that in Fig.2.

* Catalogue number 3122 134 92300. Six magnets are included in the packing of the deflection unit.

→ ELECTRICAL DATA


	parallel connected	series connected
Line deflection coils		
inductance	228,5 μH ± 5%	914 μH ± 5%
resistance	0.41 Ω ± 5%	1.64 Ω ± 5%
line deflection current,		
for raster scan, at 17 kV	7,34 A (p-p) ± 5%	3,67 A (p-p) ± 5%
raster scan	230 mm	230 mm
Field deflection coils		
inductance	2,30 mH ± 5%	9,18 mH ± 5%
resistance	2,55 Ω ± 5%	10.2 Ω ± 5%
field deflection current,	,	
for raster scan, at 17 kV	2,06 A (p-p) ± 5%	1,03 A (p-p) ± 5%
raster scan	170 mm	170 mm

Maximum permissible DC voltage between line and field coils

Maximum permissible DC voltage between field coil and yoke ring

Coupling between line and field coils, at 1 V, 500 Hz

Note: The values apply at an ambient temperature of 23 °C.

3000 V

300 V

≤ 1/100

Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with \bullet .

Interconnections

	terminals to be	output terminals*		
	interconnected	live	neutral	
Line deflection coils	3, 4 to 5′, 6′			
parallel connected	and 3', 4' to 5, 6	3, 4, 5', 6'	3', 4' , 5, 6	
series connection	3, 4 to 3', 4'	5′, <u>6′</u>	<u>5</u> , 6	
Field deflection coils				
parallel connected	1 to 2' and 1' to 2	<u>1'</u> , 2	1, <u>2'</u>	
series connection	2 to 2'	<u>1'</u>	<u>1</u>	

^{*} Terminals which are most convenient to be used as output terminals are underlined.

Geometric distortion, without raster correction and centring magnets.

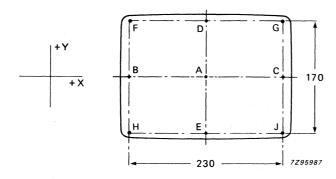


Fig. 3 Raster scan.

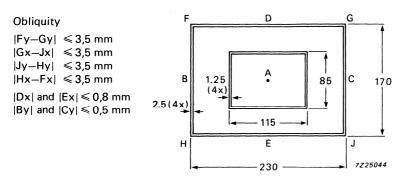


Fig. 4 Obliquity.

Note: The edges of the displayed raster should fall within the two rectangles.

Spot quality and measurement (refer to Fig. 3)

To be measured in accordance with TVV55-84-0002. Mean spot dimension is related to the spot at point A.

Mean spot size = $\frac{1+s}{2}$

Where:

| = longest spot axiss = shortest spot axis

Measuring conditions:

 $V_{ht} = 17 \text{ kV}$ $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu \text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size

B and C = spot size A + $15\% \pm 20\%$

spot size

D and E = spot size A + 15% ± 20%

spot size F, G, H and J = spot size A + $25\% \pm 20\%$

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

95 °C

Maximum possible temperature rise (ΔT) as a result of coil losses, at 50 kHz

35 °C

Storage temperature range

 $-25 \text{ to } + 95 \,^{\circ}\text{C}$

Flame retarding Flammability

according to UL1413

according to UL94,

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration

IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump

IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock

IEC 68-2-27, test Ea;

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold

IEC 68-2-1, test Ab;

96 h, -25 °C.

Dry heat

IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat

IEC 68-2-30, test Db; 21 cycles, + 40 °C.

Damp heat, steady state

IEC 68-2-3, test Ca, 21 days.

zamp mate, otoday otato

IEC 68-2-14, test Nb;

Change of temperature

5 cycles of 2 h at -25 °C and 2 h at +95 °C.

duration of one cycle 5 h.

BEAM CENTRING

The deflection unit has two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

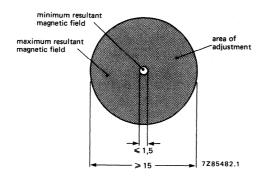


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

- For Data Graphic Displays
- For use with high resolution 38 cm (15 in)/1100 monochrome CRTs
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M38-328

QUICK REFERENCE DATA

Deflection angle	110 ^o
Neck diameter of CRT	28,6 mm
Screen diagonal of CRT	38 cm
Display format	landscape
Line deflection current for raster scan, at 17 kV	10,5 A (p-p)
Inductance of line coils, parallel connected	107,5 μΗ
Field deflection current for raster scan, at 17 kV	0,95 A (p-p)
Resistance of field coils, series connected	10,4 Ω

APPLICATION

This deflection unit is for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. It is developed in conjunction with the high resolution display tube M38-328 to provide minimum deflection defocusing and good raster geometry without additional adjustments. Deflection unit AT1039/05 is for display in horizontal (landscape, TV) format.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 50 kHz, thanks to the use of Litze wire in the line coils. At this line frequency the temperature rise of the deflection unit is less than 35° C, the maximum allowed average copper temperature of the unit is 95° C, hence, the environmental temperature must not exceed 65° C. Where the circuitry and cabinet design are such than an operating environmental temperature of less than 65° C is attained, the maximum permissible line frequency may be higher than the 50 kHz specified.

To provide some choice of impedances, the terminations of the coils are brought out permitting either series of parallel connections.

When the coils are connected in parallel it is possible to provide scan at the highest frequency using existing devices. The impedance of the field coils (scries connected) is adjusted for operation with integrated circuits (e.g. TDA2653A).

3322 603 00810

The following associated wound components are available for use in line time base circuits:

AT2076/84 — universal line output transformer;

AT4042/33A — linearity control unit (parallel connection);

AT4042/08A - linearity control unit (series connection);

AT4043/64 - line driver transformer;

AT4043/29 - DC shift transformer;

AT4044/35 - amplitude control unit.

A universal monitor design (C64) has been developed, which is based on AT1039 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.

The unit meets the self-extinguishing requirements of CSA, IEC and UL.

The top of the unit is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0,75 to 0,90 Nm.

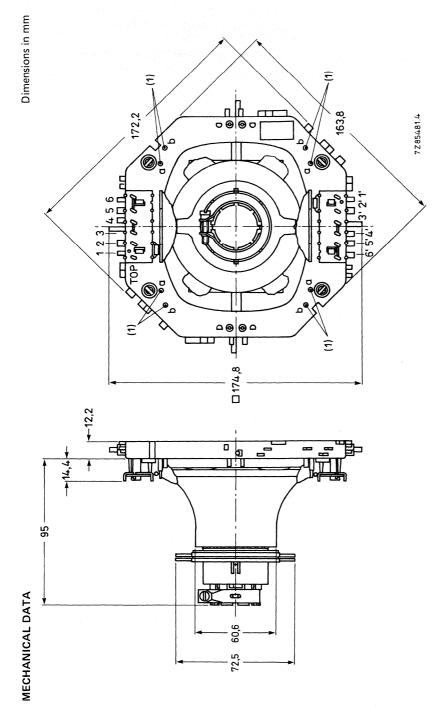


Fig. 1 Deflection unit AT1039/05.

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1). The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2.

* Catalogue number 3122 134 92300.

ELECTRICAL DATA

	parallel connected	series connected
Line deflection coils	407.5 11 . 50/	400 11 50
inductance	107,5 μH ± 5%	430 μH ± 5%
resistance	$0.18 \Omega \pm 10\%$	$0.72~\Omega \pm 5\%$
line deflection current for		
raster scan, at 17 kV	10,5 A (p-p) ± 5%	5,25 A (p-p) ± 5%
raster scan	259 mm	259 mm
Field deflection coils		
inductance	2,38 mH ± 5%	9,5 mH ± 5%
resistance	$2.6 \Omega \pm 5\%$	$10.4 \Omega \pm 5\%$
field deflection current for		
raster scan, at 17 kV	1,9 A (p-p) ± 5%	$0.95 \text{ A (p-p)} \pm 5\%$
raster scan	194 mm	194 mm

Maximum permissible DC voltage between line and field coils	3000 V
Maximum permissible DC voltage between field coil and yoke ring	300 V
Coupling between line and field coils, at 1 V, 500 Hz	1/100

Note: The values apply at an ambient temperature of 23 °C

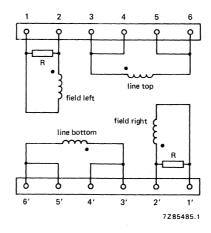


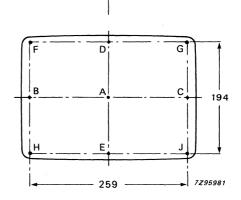
Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with \bullet .

Interconnections

	terminals to be	output terminals*		
	interconnected	live	neutral	
Line deflection coils			144	
parallel connection	3, 4 to 5', 6' and 3', 4' to 5, 6	3, 4 5′, 6′	3', <u>4'</u> , 5, 6	
series connection	3, 4 to 3', 4'	5′, <u>6′</u>	<u>5</u> , 6	
Field deflection coils				
parallel connection	1 to 2' and 1' to 2	<u>1'</u> , 2	1, <u>2</u> ′	
series connection	2 to 2'	<u>1'</u>	1	

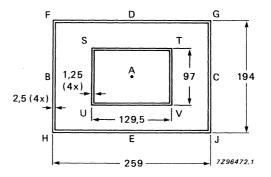
^{*} Terminals which are most convenient to be used as output terminals are underlined.

Geometric distortion, without raster correction and centring magnets.


Fig. 3 Raster scan.

Obliquity

 $|Fy-Gy| \le 2,0 \text{ mm}$ $|Gx-Jx| \le 2,0 \text{ mm}$ $|Jy-Hy| \le 2,0 \text{ mm}$ $|Hx-Fx| \le 2,0 \text{ mm}$ $|Dx-Ex| \le 0,5 \text{ mm}$ $|By-Cy| \le 0,5 \text{ mm}$


Fig. 4 Obliquity.

Note: The edges of the displayed raster should fall within the two rectangles.

+ Y

+ X

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002.

Mean spot dimension is related to the spot at point A.

Mean spot size = 1 + s Where; 1 = longest spot axis

s = shortest spot axis

Measuring conditions: $V_{ht} = 17 \text{ kV}$

 $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu \text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + $15\% \pm 20\%$ spot size D and E = spot size A + $15\% \pm 20\%$ spot size F,G,H and J = spot size A + $25\% \pm 20\%$

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature) 95 °C Maximum possible temperature rise (ΔT) as a result of coil losses at 50 kHz 35 °C

Storage temperature range -25 to + 95 °C

Flame retarding according to UL1413
Flammability according to UI 94

-lammability according to UL94,

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock IEC 68-2-27, test Ea;

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold IEC 68-2-1, test Ab;

96 h, -25 °C.

Dry heat IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state IEC 68-2-3, test Ca, 21 days.

Change of temperature IEC 68-2-14, test Nb;

5 cycles of 2 h at -25 °C and 2 h at +95 °C,

duration of one cycle 5 h.

BEAM CENTRING

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

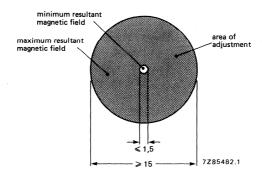


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNITS

- For Data Graphic Displays
- For use with high resolution 47 cm (20 in) and 41 cm (17 in)/1100 monochrome CRTs
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tubes M47EAA and M41EAA
- Electrical data given is for M47EAA
- Separate types for landscape and portrait formats

QUICK REFERENCE DATA

	AT1039/09	AT1039/09
Deflection angle	110 ⁰	110º
Neck diameter of CRT	28,6 mm	28,6 mm
Screen diagonal of CRT	47/41 cm	47/41 cm
Display format	portrait	landscape
Line deflection current for raster scan, at 20 kV	6,27 A (p-p)	8,16 A (p-p)
Inductance of line coils, parallel connected	230 μΗ	213 μΗ
Field deflection current for raster scan, at 20 kV	1,39 A (p-p)	1,08 A (p-p)
Resistance of field coils, series connected	10,4 Ω	10,5 Ω

APPLICATION

These deflection units are for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. They are developed in conjunction with the high resolution display tube M47EAA to provide minimum deflection defocusing and good raster geometry without additional adjustments. The AT1039/08 and AT1039/09 display the same very high performance when used in conjunction with the M41EAA high resolution display tube.

Deflection unit AT1039/08 is for displays in vertical (portrait) format, AT1039/09 for displays in horizontal (landscape, TV) format.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 50 kHz in landscape format and approx. 70 kHz in portrait format. At this line frequency the temperature rise of the deflection unit is less than 35 °C, the maximum allowed average copper temperature of the unit is 95 °C, hence, the environmental temperature must not exceed 65 °C. Where the circuitry and cabinet design are such that an operating environmental temperature of less than 65 °C is attained, the maximum permissible line frequency may be higher than the 50 kHz/70 kHz specified.

To provide some choice of impedances, the termination of the coils are brought out permitting either series or parallel connections.

When the coils are connected in parallel it is possible to provide scan at the highest frequency using existing devices. The impedance of the field coils (series connected) is adjusted for operation with integrated circuits (e.g. TDA2653A).

AT1039/08 AT1039/09

3322 603 00470 3322 603 00380

The following associated wound components are available for use in line time base circuits:

AT2076/84 — universal line output transformer;

AT4042/33A - linearity control unit (parallel connection);

AT4042/08A - linearity control unit (series connection);

AT4043/64 - line driver transformer;

AT4043/29 - d.c. shift transformer;

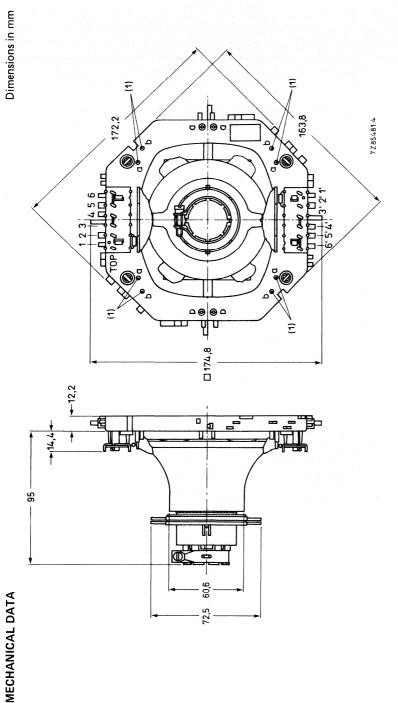
AT4044/35 - amplitude control unit.

A universal monitor design (C64) has been developed, which is based on AT1039 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.


The units meet the self-extinguishing requirements of CSA, IEC and UL.

The top of the units is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0,75 to 0,90 Nm.

If a further improvement of raster geometry is required use can be made of correction magnets*, which The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2. must be fitted to mounting posts (1); posts a to be used for AT1039/08, posts b for AT1039/09. Fig. 1 Deflection units AT1039/08 and AT1039/09.

* Catalogue number 3122 134 92300.

MECHANICAL DATA

	AT1039	/08	AT1039/	09
	parallel connected	series connected	parallel connected	series connected
Line deflection coils				
inductance	230 μH ± 5%	920 μH ± 5%	213 μH ± 5%	852 μH ± 5%
resistance	0.39 Ω ± 5%	1.56 Ω ± 5%	0.37 Ω ± 5%	1.48 Ω ± 5%
line deflection current,				
for raster scan,				
at 20 kV	6.27 A (p-p) ± 5%	3.14 A (p-p) ± 5%	8.16 A (p-p) ± 5%	4.03 A (p-p) ± 5%
raster scan	261 mm	261 mm	348 mm	348 mm
Field deflection coils				
inductance	2.33 mH ± 5%	9.30 mH ± 5%	2.38 mH ± 5%	9.50 mH ± 5%
resistance	$2.60 \Omega \pm 5\%$	$10.4 \Omega \pm 5\%$	2.63 Ω ± 5%	10.5 Ω ± 5%
field deflection current,		1		
for raster scan,				
at 20 kV	2.78 A (p-p) ± 5%	1.39 A (p-p) ± 5%	2.16 A (p-p) ± 5%	1.08 A (p-p) ± 5%
raster scan	348 mm	348 mm	261 mm	261 mm

Maximum permissible DC voltage between line and field coils 3000 V Maximum permissible DC voltage between field coil and yoke ring 300 V Coupling between line and field coils, at 1 V, 500 Hz $\leq 1/100$

Note: The values apply at an ambient temperature of 23 °C.

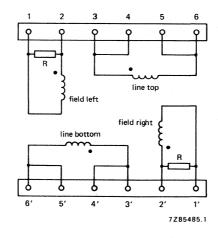


Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with ullet.

Interconnections

	terminals to be interconnected	output terminals*		
		live	neutral	
Line deflection coils	3, 4 to 5', 6'			
parallel connection	and 3', 4' to 5, 6	3, <u>4</u> 5′, 6′	3', <u>4'</u> , 5, 6	
series connection	3, 4 to 3', 4'	5', 6'	5 , 6	
Field deflection coils				
parallel connection	1 to 2' and 1' to 2	<u>1'</u> , 2	1, <u>2′</u>	
series connection	2 to 2'	1'	1	

^{*} Terminals which are most convenient to be used as output terminals are underlined.

Geometric distortion, without raster correction and centring magnets.

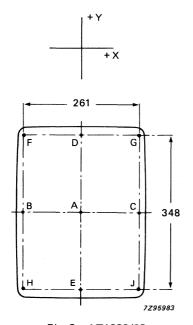


Fig. 3a AT1039/08.

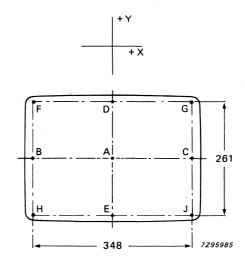
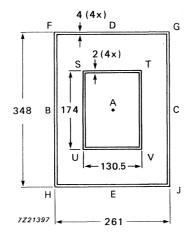
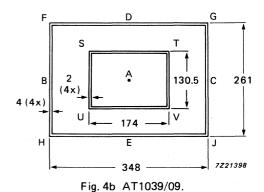




Fig. 3b AT1039/09.

Obliquity

 $\begin{aligned} |\mathsf{Fy\text{-}Gy}| \leqslant 3.5\,\mathsf{mm} \\ |\mathsf{Gx\text{-}Jx}| \leqslant 3.5\,\mathsf{mm} \\ |\mathsf{Jy\text{-}Hy}| \leqslant 3.5\,\mathsf{mm} \\ |\mathsf{Hx\text{-}Fx}| \leqslant 3.5\,\mathsf{mm} \\ |\mathsf{Dx}|\mathsf{and}|\mathsf{Ex}| \leqslant 0.8\,\mathsf{mm} \\ |\mathsf{By}|\mathsf{and}|\mathsf{Cy}| \leqslant 0.5\,\mathsf{mm} \end{aligned}$

Note: The edges of the displayed raster should fall within the two rectangles.

Fig. 4a AT1039/08.

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002.

Mean spot dimension is related to the spot at point A.

Mean spot size = 1 + s Where; 1 = longest spot axis

s = shortest spot axis

Measuring conditions: $V_{ht} = 20 \text{ kV}$

 $V_{g2} = 700 \text{ V}$ $I_a = 100 \,\mu\text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + $15\% \pm 20\%$ spot size D and E = spot size A + $15\% \pm 20\%$ spot size F,G,H and J = spot size A + $25\% \pm 20\%$

AT1039/08 AT1039/09

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

Maximum possible temperature rise (ΔT) as a result of coil losses at

50 kHz and 70 kHz respectively

Storage temperature range

Flame retarding

Flammability

95 °C

35 °C

-25 to +95 °C

according to UL1413 according to UL94,

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump IEC 68-2-29, test Eb:

250 m/s², 1000 bumps, 6 directions.

IEC 68-2-27, test Ea; Shock

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold IEC 68-2-1, test Ab;

96 h, -25 °C.

IEC 68-2-2, test Bb; Dry heat

96 h, + 95 °C.

Cyclic damp heat IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state IEC 68-2-3, test Ca, 21 days.

Change of temperature IEC 68-2-14, test Nb;

5 cycles of 2 h at -25 °C and 2 h at +95 °C,

duration of one cycle 5 h.

BEAM CENTRING

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

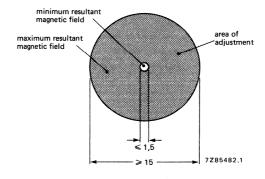


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNITS

- For Data Graphic Displays
- For use with high resolution 36 cm (15 in)/110 FLAT SQUARE monochrome CRT's
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M36EAB
- Separate types for landscape and portrait formats

QUICK REFERENCE DATA

	AT1039/20	AT1039/21
Deflection angle	110 ^o	110º
Neck diameter of CRT	28.6 mm	28.6 mm
Screen diagonal of CRT	36 cm	36 cm
Display format	portrait	landscape
Line deflection current for raster scan, at 17 kV	5.66 A (p-p)	7.64 A (p-p)
Inductance of line coils, parallel connected	233 μΗ	205 μΗ
Field deflection current for raster scan, at 17 kV	1.32 A (p-p)	0.95 A (p-p)
Resistance of field coils, series connected	10.0 Ω	10.4 Ω

APPLICATION

These deflection units are for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. They are developed in conjunction with the high resolution display tube M36EAB to provide minimum deflection defocusing and good raster geometry without additional adjustments.

Deflection unit AT1039/20 is for displays in vertical (portrait) format, AT1039/21 for displays in horizontal (landscape, TV) format.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 50 kHz in landscape format and approx. 70 kHz in portrait format. At this line frequency the temperature rise of the deflection unit is less than 35 °C, the maximum allowed average copper temperature of the unit is 95 °C, hence, the environmental temperature must not exceed 65 °C. Where the circuitry and cabinet design are such that an operating environmental temperature of less than 65 °C is attained, the maximum permissible line frequency may be higher than the 50 kHz/70 kHz specified.

To provide some choice of impedances, the termination of the coils are brought out permitting either series or parallel connections.

When the coils are connected in parallel it is possible to provide scan at the highest frequency using existing devices. The impedance of the field coils (series connected) is adjusted for operation with integrated circuits (e.g. TDA2653A).

The following associated wound components are available for use in line time base circuits:

AT2076/84 - universal line output transformer;

AT4042/33A - linearity control unit (parallel connection);

AT4042/08A - linearity control unit (series connection);

AT4043/64 — line driver transformer;

AT4043/29 - d.c. shift transformer;

AT4044/35 - amplitude control unit.

A universal monitor design (C64) has been developed, which is based on AT1039 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction magnets.

The units meet the self-extinguishing requirements of CSA, IEC and UL.

The top of the units is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.75 to 0.90 Nm.

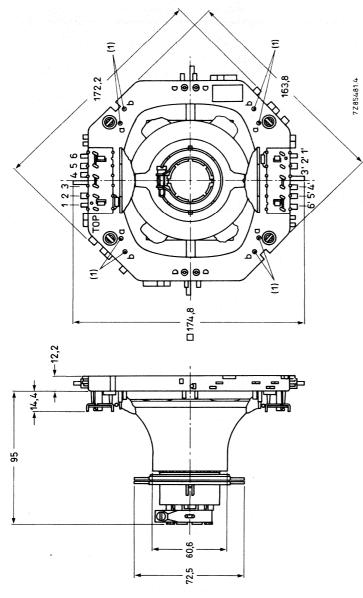


Fig. 1 Deflection units AT 1039/20 and AT 1039/21.

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1); posts a to be used for AT1039/20, posts b for AT1039/21.

The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2.

* Catalogue number 3122 134 92300.

ELECTRICAL DATA

	AT1039/20		AT1039/21	
	parallel connected	series connected	parallel connected	series connected
Line deflection coils				
inductance	233 μH ± 5%	932 μH ± 5%	205 μH ± 5%	820 μH ± 5%
resistance line deflection current for	$0.38~\Omega~\pm~5\%$	1.52 Ω ± 5%	$0.35~\Omega~\pm~5\%$	1.40 Ω ± 5%
raster scan at 17 kV raster scan	5.66 A _(p-p) ± 5% 200 mm	2.83 A _(p-p) ± 5% 200 mm	7.64 A _(p-p) ± 5% 267 mm	3.82 A _(p-p) ± 5% 267 mm
Field deflection coils				
inductance	2.20 mH ± 5%	8.80 mH ± 5%	2.38 mH ± 5%	9.50 mH ± 5%
resistance	2.50 Ω ± 5%	10.0 Ω ± 5%	2.60 Ω ± 5%	10.4 Ω ± 5%
field deflection current for				
raster scan at 17 kV			1.90 A _(p-p) ± 5%	
raster scan	267 mm	267 mm	200 mm	200 mm

Maximum permissible DC voltage between line and field coils 3000 V Maximum permissible DC voltage between field coil and yoke ring 300 V Coupling between line and field coils, at 1 V, 500 Hz $\leq 1/100$

Note: The values apply at an ambient temperature of 23 °C.

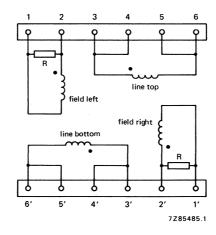


Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with \bullet .

Interconnections

	terminals to be	output terminals*	
	interconnected	live	neutral
Line deflection coils	3, 4 to 5′, 6′		
parallel connection	and 3′, 4′ to 5, 6	3, <u>4</u> 5′, 6′	3', <u>4'</u> , 5, 6
series connection	3, 4 to 3', 4'	5', 6'	5 , 6
Field deflection coils	1 to 2'		
parallel connection	and 1' to 2	<u>1'</u> , 2	1, <u>2'</u>
series connection	2 to 2'	<u>1'</u>	1

^{*} Terminals which are most convenient to be used as output terminals are underlined.

Geometric distortion, without raster correction and centring magnets.

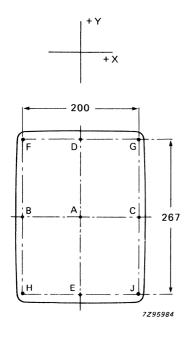


Fig. 3a AT1039/20.

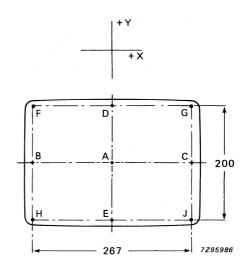
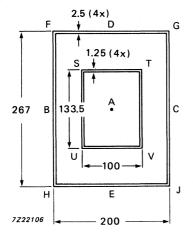



Fig. 3b AT1039/21.

Obliquity

$$\begin{split} |\mathsf{Fy}\text{-}\mathsf{Gy}| \leqslant 2.5\,\mathsf{mm} \\ |\mathsf{Gx}\text{-}\mathsf{Jx}| \leqslant 2.5\,\mathsf{mm} \\ |\mathsf{Jy}\text{-}\mathsf{Hy}| \leqslant 2.5\,\mathsf{mm} \\ |\mathsf{Hx}\text{-}\mathsf{Fx}| \leqslant 2.5\,\mathsf{mm} \\ |\mathsf{Dx}|\mathsf{and}|\mathsf{Ex}| \leqslant 0.8\,\mathsf{mm} \\ |\mathsf{By}|\mathsf{and}|\mathsf{Cy}| \leqslant 0.5\,\mathsf{mm} \end{split}$$

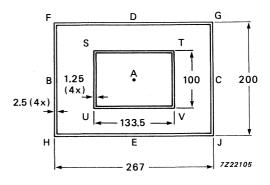


Fig. 4b AT1039/21.

Note: The edges of the displayed raster should fall within the two rectangles.

Fig. 4a AT1039/20.

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002.

Mean spot dimension is related to the spot at point A.

Mean spot size = $\frac{1+s}{2}$ Where; $\frac{1}{s} = \frac{1}{s} = \frac{1+s}{s}$ Where; $\frac{1}{s} = \frac{1}{s} = \frac{1}{s} = \frac{1+s}{s} = \frac{1+s}{$

Measuring conditions: $V_{ht} = 17 \text{ kV}$

 $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu \text{A}$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + $15\% \pm 20\%$ spot size D and E = spot size A + $15\% \pm 20\%$ spot size F,G,H and J = spot size A + $25\% \pm 20\%$

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

Maximum possible temperature rise (ΔT) as a result of coil losses at

50 kHz and 70 kHz respectively

Storage temperature range

Flame retarding

Flammability

95 °C

35 °C

-25 to +95 °C

according to UL1413

according to UL94,

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration

IEC 68-2-6; test Fc, procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump

IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock

IEC 68-2-27. test Ea;

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold

IEC 68-2-1, test Ab;

96 h, -25 °C.

Dry heat

IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat

IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state

IEC 68-2-3, test Ca, 21 days.

Change of temperature IEC 68-2-14, test Nb;

5 cycles of 2 h at -25 °C and 2 h at + 95 °C,

duration of one cycle 5 h.

BEAM CENTRING

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

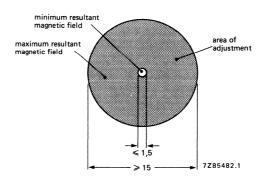


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

- For Data Graphic Displays
- For use with high resolution 47 cm (20 in) and 41 cm (17 in)/1100 monochrome CRTs
- Optimized for minimum deflection defocusing
- Preset raster geometry for high resolution display tube M47EAA and M41EAA
- Electrical data given is for M47EAA

QUICK REFERENCE DATA

110°
28,6 mm
47/41 cm
landscape
11,0 A (p-p)
111 μΑ
1,04 A (p-p)
10,4 Ω

APPLICATION

This deflection unit is for Data Graphic Displays, especially when high resolution and/or high frequency operation is required. It is developed in conjunction with the high resolution display tube M47EAA to provide minimum deflection defocusing and good raster geometry without additional adjustments. Deflection unit AT1039/39 is for displays in horizontal (landscape, TV) format.

The AT1039/39 displays the same very high performance when used in conjunction with the M41EAA high resolution display tube.

To utilize the full potential of these deflection units in respect of deflection defocusing, dynamic focusing has to be applied in horizontal and vertical directions.

The line scan frequency is limited by the temperature of the deflection coils. The practical value depends on environmental conditions, but in general terms the highest operating frequency is approx. 50 kHz. At this line frequence the temperature rise of the deflection unit is less than 35°C, the maximum allowed average copper temperature of the unit is 95 °C, hence, theenvironmental temperature must not exceed 65 °C. Where the circuitry and cabinet design are such than an operating environmental temperature of less than 65 °C is attained, the maximum permissible line frequency may be higher than the 50 kZh specifield.

To provide some choice of impedances, the terminations of the coils are brought out permitting either series or parallel connections.

When the coils are connected in parallel it is possible to provide scan at the highest frequency using existing devices. The impedance of the field coils (series connected) is adjusted for operation with integrated circuits (e.g. TDA2653A).

3322 603 00730

The following associated wound components are available for use in line time base circuits:

AT2076/84 — universal line output transformer;

AT4042/33A — linearity control unit (parallel connection);

AT4042/08A — linearity control unit (series connection);

AT4043/64 - line driver transformer;

AT4043/29 — DC shift transformer;

AT4044/35 — amplitude control unit.

A universal monitor design (C64) has been developed, which is based on AT1039 deflection coils; it permits adjustment of the operating frequencies to the desired value by replacement of a few components only.

Further details are available on request.

DESCRIPTION

The line and field deflection coils are basically saddle-shaped and are surrounded by a Ferroxcube yoke ring. A special winding technique guarantees a precise magnetic field and a high reproducibility. Ferroxdure magnets are provided for beam centring. Provisions are made for mounting raster correction

magnets.

The unit meets the self-extinguishing requirements of CSA, IEC and UL.

The top of the unit is marked.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube so that it touches the cone; the maximum push-on force on the tube is 50 N.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0,75 to 0,90 Nm.

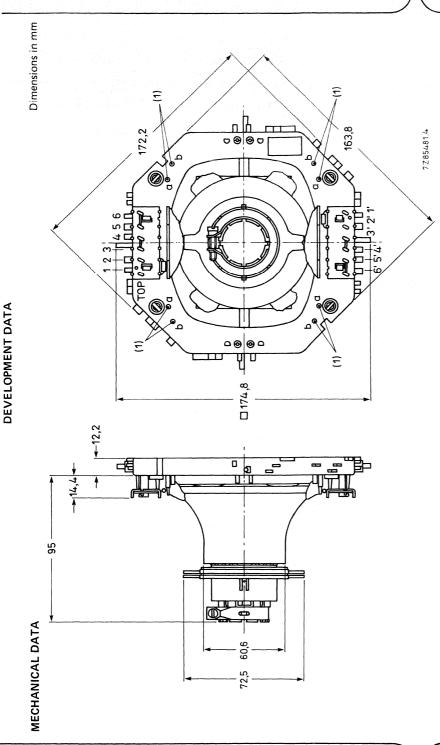


Fig. 1 Deflection unit AT1039/39.

If a further improvement of raster geometry is required use can be made of correction magnets*, which must be fitted to mounting posts (1). The unit has solder pins for connection. The pin numbering in Fig. 1 corresponds to that in Fig. 2.

* Catalogue number 3122 134 92300.

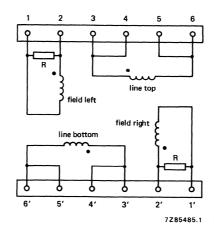
ELECTRICAL DATA

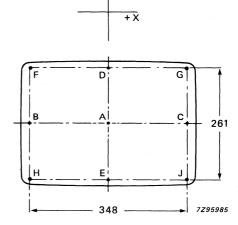
	parallel connected	series connected
Line deflection coils		
inductance	111 μH ± 5%	444 μH ± 5%
resistance	$0.18~\Omega~\pm~10\%$	$0.72 \Omega \pm 5\%$
line deflection current for		
raster scan, at 17,5 kV	11.0 A (p-p) ± 5%	5.50 A (p-p) ± 5%
raster scan	348 mm	348 mm
Field deflection coils		
inductance	2.38 mH ± 5%	9.5 mH ± 5%
resistance	$2.60 \Omega \pm 5\%$	10.4 Ω ± 5%
field deflection current for		
raster scan, at 17.5 kV	2.08 A (p-p) ± 5%	1.04 A (p-p) ± 5%
raster scan	261 mm	261 mm
Maximum permissible DC voltage betw	veen line and field coils	3000 V
Maximum permissible DC voltage betw	veen field coil and voke ring	300 V

≤ 1/100

Note: The values apply at an ambient temperature of 23 °C

Coupling between line and field coils, at 1 V, 500 Hz




Fig. 2 Diagram of line and field coils; R = 270 Ω . The beginning of the windings is indicated with ullet.

Interconnections

	terminals to be	output terminals*		
	interconnected	live	neutral	
Line deflection coils				
	3, 4 to 5', 6'			
parallel connection	and	3, <u>4</u> , 5′, 6′	3′, <u>4′</u> , 5, 6	
	3', 4' to 5, 6			
series connection	3, 4 to 3', 4'	5′, <u>6′</u>	<u>5,</u> 6	
Field deflection coils				
	1 to 2'			
parallel connection	and	1', 2	1, 2'	
	1' to 2			
series connection	2 to 2'	<u>1'</u>	. 1 se <u>1</u> . s., s., s.	

^{*} Terminals which are most convenient to be used as output terminals are underlined.

Geometric distortion, without raster correction and centring magnets.

+ Y

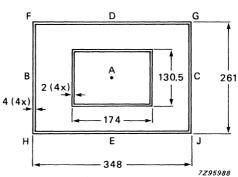
Fig. 3 Raster scan.

Obliquity

|Fy-Gy| ≤ 3,5 mm

|Gx-Jx | ≤ 3,5 mm

|Jy-Hy | ≤ 3,5 mm


 $|Hx-Fx| \leq 3.5 \text{ mm}$

|Dx| and $|Ex| \le 0.8$ mm

|By| and $|Cy| \le 0.5$ mm

Fig. 4 Obliquity.

Note: The edges of the displayed raster should fall within the two rectangles.

Spot quality and measurement (refer to Fig. 3)

To be measured according to TVV55-84-0002.

Mean spot dimension is related to the spot at point A.

Mean spot size = 1 + s

Where; 1 = longest spot axis

2

= shortest spot axis

Measuring conditions:

 $V_{ht} = 17.5 \text{ kV}$ $V_{g2} = 700 \text{ V}$ $I_a = 100 \mu A$

The following values for spot growth are defined with DC-deflection and optimal focus voltage V_{g4} per measuring point:

spot size B and C = spot size A + 15% \pm 20% spot size D and E = spot size A + 15% \pm 20%

spot size F,G,H and J = spot size A + 25% \pm 20%

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

95 °C

Maximum possible temperature rise (ΔT) as a result of coil losses at 50 kHz

35 °C -25 to + 95 °C

Storage temperature range Flame retarding

according to UL1413

Flammability

according to UL94,

category V1

ENVIRONMENTAL TESTS

The deflection units withstand the following tests:

Vibration

IEC 68-2-6; test Fc. procedure B4;

10-55-10 Hz, amplitude 0,35 mm, 3 x 30 min.

Bump

IEC 68-2-29, test Eb;

250 m/s², 1000 bumps, 6 directions.

Shock

IEC 68-2-27, test Ea;

11 ms, half-sine pulse shape, 350 m/s², 3 x 6 directions.

Cold

IEC 68-2-1, test Ab;

96 h, -25 °C.

Dry heat

IEC 68-2-2, test Bb;

96 h, + 95 °C.

Cyclic damp heat

IEC 68-2-30, test Db;

21 cycles, + 40 °C.

Damp heat, steady state

IEC 68-2-3, test Ca, 21 days.

Change of temperature

IEC 68-2-14, test Nb;

5 cycles of 2 h at -25 °C and 2 h at +95 °C,

duration of one cycle 5 h.

BEAM CENTRING

The deflection units have two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are for placing the electron beam coaxially with the deflection coils. They are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The required torque on the magnets is 35 to 250 mNm. See also Fig. 5.

The correct position of the magnets ensures freedom from curved lines in the centre of the raster and is beneficial with regard to raster geometry, deflection defocusing, corner cutting etc. For quality performance, picture shift should be obtained by applying d.c. current through the deflection coils.

This should be done after adjustment of raster linearity and after correct phasing of displayed information in respect of the raster.

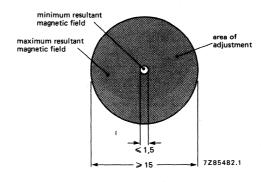


Fig. 5.

PACKING

The deflection units are packed on pallets of 10 or 15 boxes. Each box contains 24 deflection units.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube diagonal neck diameter	24 cm (9 in) 20 mm
Deflection angle	900
Line deflection current for raster scan, at 10 kV	2,35 A (p-p)
Inductance of line coils	475 μΗ
Field deflection current for raster scan, at 10 kV	0,21 A (p-p)
Resistance of field coils	40 Ω

APPLICATION

This deflection unit is for 24 cm (9 in) 90° black & white picture tubes and monitor tubes for basic displays. The unit is used in conjunction with:

- line output transformer AT2140/16 or AT2140/16B;
- linearity control unit AT4042/08A or linearity corrector AT4042/46.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound fields coils. The line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

MECHANICAL DATA

Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

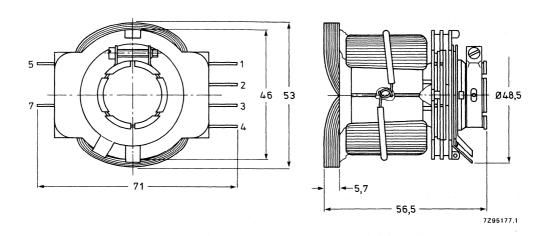


Fig. 1 Deflection unit AT1077/01.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2), terminals 1 and 4

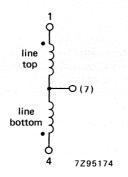
Inductance
Resistance
L/R

Line deflection current, raster scan (168 mm), at 10 kV

Field deflection coils, series connected (Fig. 2), terminals 2 and 3 Inductance

Resistance L/R

Field deflection current, raster scan (126 mm), at 10 kV


Maximum DC voltage between terminals of line and field coils Maximum operating temperature (average copper temperature) Storage temperature range

Coupling between line and field coils, at 500 Hz

4/5 μπ ± 5%	
0,8 Ω ± 5% 594 μH/Ω	
2,35 A (p-p) ± 59	%

72 mH \pm 5% 40 Ω \pm 5% 1,80 mH/ Ω 0,21 A (p-p) \pm 5%

500 V 95 °C -40 to + 75 °C ≤ 1/50

field top (5)
field bottom 77295171

Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.

Geometric distortion measured without centring magnets on a 24 cm (9 in) reference tube (dimensions in mm)

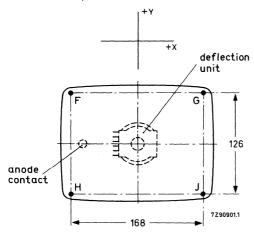
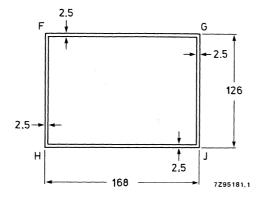



Fig. 3.

 $|Fy-Gy| \le 2$ $|Gx-Jx| \le 2$ $|Jy-Hy| \le 2$ $|Hx-Fx| \le 2$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.



Fig. 5.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	
diagonal	24 cm (9 in)
neck diameter	20 mm
Deflection angle	90o
Line deflection current for raster scan, at 10 kV	2.32 A (p-p)
Inductance of line coils	475 μΗ
Field deflection current for raster scan, at 10 kV	0.21 A (p-p)
Resistance of field coils	40 Ω

APPLICATION

This deflection unit is for 24 cm (9 in) 90° black & white picture tubes and monitor tubes for basic displays. It is developed in conjunction with the high resolution display tube M24-306. The unit is used in conjunction with:

- line output transformer AT2140/16 or AT2140/16B;
- linearity control unit AT4042/08A or linearity corrector AT4042/46.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound fields coils. The line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

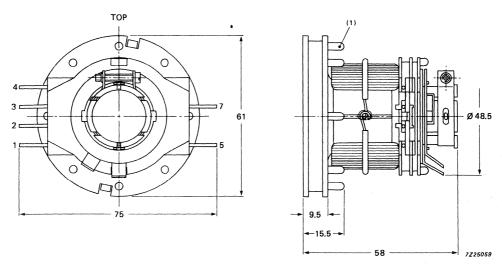


Fig. 1 Deflection unit AT1077/01A.

(1) For fitting plastic-bonded FXD magnet, catalogue number 3122 104 94120, see "Correction facilities".

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

	Line deflection coils, series connected (Fig. 2), terminals 1 and 4	
	Inductance	$475 \mu H \pm 5\%$
	Resistance	$0.8~\Omega~\pm 5\%$
	L/R	594 μ H/ Ω
	Line deflection current, raster scan (168 mm), at 10 kV	2.32 A (p-p) ± 5%
	Field deflection coils, series connected (Fig. 2), terminals 2 and 3	
	Inductance	72 mH ± 5%
	Resistance	40 Ω ± 5%
	L/R	$1.80~\mathrm{mH/}\Omega$
-	Field deflection current, raster scan (126 mm), at 10 kV	0.21 A (p-p) ± 5%
	Maximum DC voltage between terminals of line and field coils	500 V
	Maximum operating temperature (average copper temperature)	95 °C

Maximum DC voltage between terminals of line and field coils	500 V	
Maximum operating temperature (average copper temperature)	95 °C	
Storage temperature range	-40 to + 75 °C	
Coupling between line and field coils, at 500 Hz	≤ 1/50	

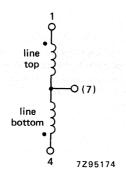


Fig. 2a Line coils.

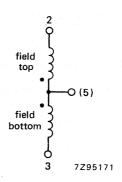
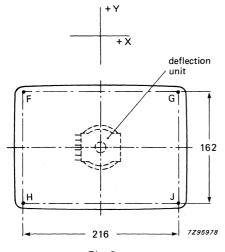
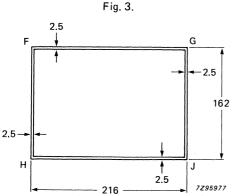




Fig. 2b Field coils.

The beginning of the windings is indicated with ullet.

Geometric distortion measured without centring magnets on a 24 cm (9 in) reference tube (dimensions in mm)

|Fy-Gy | ≤ 2 $|Gx-Jx| \leq 2$ |Jy-Hy | ≤ 2 |Hx-Fx | ≤ 2

Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

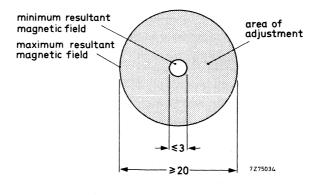


Fig. 5.

For raster correction

Up to eight plastic bonded Ferroxdure magnets can be mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	
diagonal	24 cm (9 in)
neck diameter	20 mm
Deflection angle	90o
Line deflection current for raster scan, at 10 kV	2.32 A (p-p)
Inductance of line coils	470 μΗ
Field deflection current for raster scan, at 10 kV	0.21 A (p-p)
Resistance of field coils	40 Ω

APPLICATION

This deflection unit is for 24 cm (9 in) 90° monochrome picture tubes and monitor tubes for basic displays. It is developed in conjunction with the high resolution tubes M24-512/514. The unit is used in conjunction with:

- line output transformer AT2140/16 or AT2140/16B;
- linearity control unit AT4042/08A or linearity corrector AT4042/46.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound fields coils. The line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

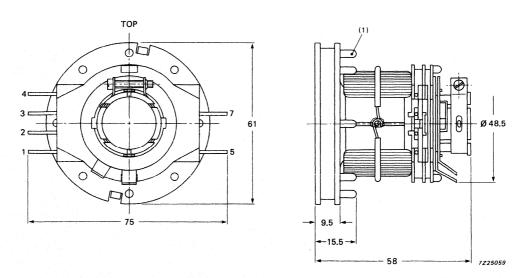
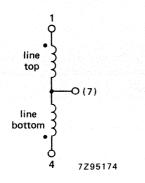


Fig. 1 Deflection unit AT1077/04A.

(1) For fitting plastic-bonded FXD magnet, catalogue number 3122 104 94120, see "Correction facilities".

ELECTRICAL DATA


The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2), terminals 1 and 4

Inductance		470 μ H \pm 5%
Resistance		$0.94~\Omega~\pm~5\%$
L/R		$500~\mu ext{H}/\Omega$
Line deflection current, raster scan (168 r	nm), at 10 kV	2.32 A (p-p) + 10% -4%

Field deflection coils, series connected (Fig. 2), terminals 2 and 3

Inductance	72 mH ± 8%
Resistance	40 Ω ± 5%
the L/R the first section and the section of the se	1.80 mH/ Ω
Field deflection current, raster scan (126 mm), at 10 kV	0.21 A (p-p) ± 10%
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

field top (5)
field bottom 77295171

Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with .

Geometric distortion measured without centring magnets on a 24 cm (9 in) reference tube (dimensions in mm)

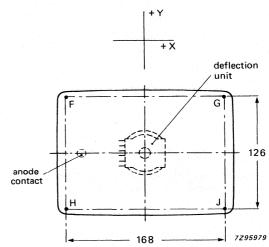
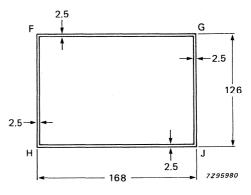


Fig. 3 Raster scan.

Obliquity


|Fy-Gy | ≤ 2

|Gx-Jx | ≤ 2

|Jy-Hy | ≤ 2

|Hx-Fx | ≤ 2

Fig. 4 The edges of the displayed raster fall within the two rectangles.

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

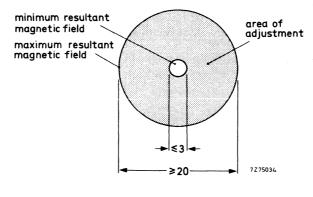


Fig. 5.

For raster correction

Up to eight plastic bonded Ferroxdure magnets can be mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube	
diagonal	31 cm (12 in)
neck diameter	20 mm
Deflection angle	900
Line deflection current for raster scan, at 12 kV	3.00 A (p-p)
Inductance of line coils	330 μΗ
Field deflection current for raster scan, at 12 kV	0.38 A (p-p)
Resistance of field coils	13.0 Ω

APPLICATION

This deflection unit is for 31 cm (12 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M31-340 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

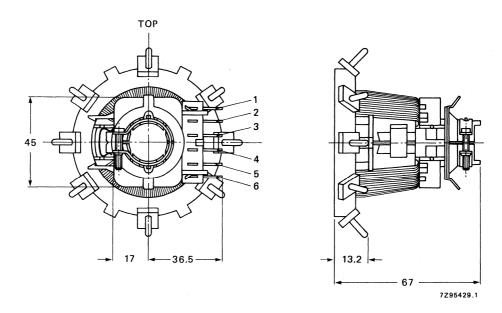
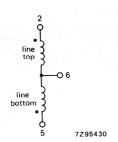


Fig. 1 Deflection unit AT1079/00.


ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5	
Inductance	$330 \mu \text{H} \pm 5\%$
Resistance	$0.66 \Omega \pm 5\%$
L/R	500 μΗ/Ω
Line deflection current, raster scan (216 mm), at 12 kV	3.00 A (p-p) ± 5%

Field deflection coils	, series connected ((Fig. 2b) terminals 3 and 4

	(= : • : : : : : : : : : : : : : : : : :	0.00 / (() () - 0.0
Field deflection coils, series	connected (Fig. 2b) terminals 3 and 4	
Inductance		25.0 mH ± 5%
Resistance		13.0 Ω ± 5%
L/R		$1.92~\mathrm{mH/}\Omega$
Field deflection current,	raster scan (162 mm), at 12 kV	$0.38 \text{ A (p-p)} \pm 5\%$
Maximum DC voltage between	een terminals of line and field coils	500 V
Maximum operating temper	ature (average copper temperature)	95 °C
Storage temperature range		-40 to + 75 °C
Coupling between line and f	ield coils, at 500 Hz	≤ 1/50

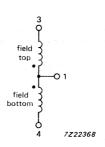


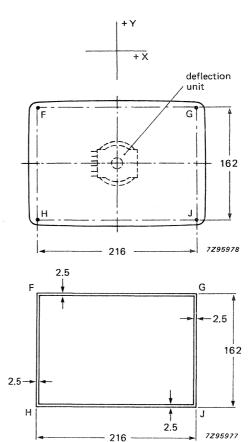
Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 31 cm (12 in) reference tube M31-340 (dimensions in mm)

Fig. 3 raster scan.


Obliquity

 $|Fy-Gy| \le 2.0$ $|Gx-Jx| \le 2.0$

|Jy-Hy | ≤ 2,0

|Hx-Fx | ≤ 2,0

Fig. 4 The edges of the displayed raster fall within the two rectangles.

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

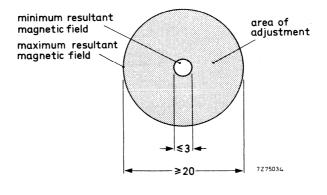


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

This data sheet contains advance information and specifications are subject to change without notice.

Supersedes AT1078/02

DEFLECTION UNIT

For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube		
diagonal		31 cm (12 in)
neck diameter		20 mm
Deflection angle		900
Line deflection current for rast	er scan, at 12 kV	2,50 A (p-p)
Inductance of line coils		480 μΗ
Field deflection current for rast	ter scan, at 12 kV	0,46 A (p-p)
Resistance of field coils		11,5 Ω

APPLICATION

This deflection unit is for 31 cm (12 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M31-340 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. **Both the line coils and the field coils are series connected.** The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

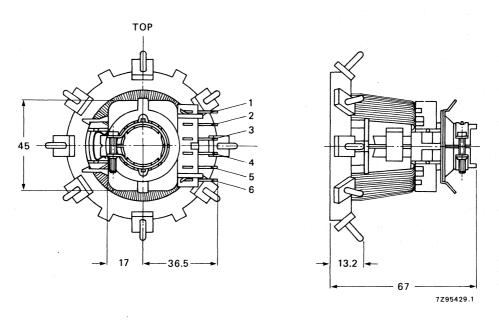
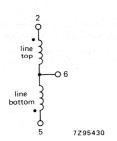


Fig. 1 Deflection unit AT1079/05.


ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5	
Inductance	480 μH ± 3,5%
Resistance	$0.9 \Omega \pm 5\%$
L/R	$533 \mu H/\Omega$
Line deflection current, raster scan (216 mm), at 12 kV	2,50 A (p-p) ± 5%
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	18 mH ± 5%
Resistance	11,5 Ω ± 5%
L/R	1,57 mH/ Ω
Field deflection current, raster scan (162 mm), at 12 kV	$0,46 \text{ A (p-p)} \pm 5\%$
Maximum d.c. voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C

≤ 1/50

Coupling between line and field coils, at 500 Hz

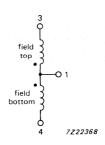


Fig. 2a Line coils.

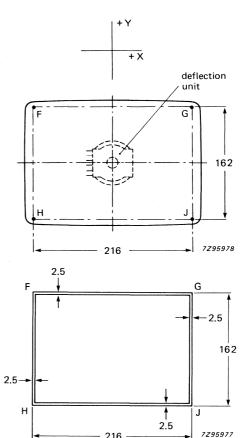
Fig. 2b Field coils.

The beginning of the windings is indicated with .

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 31 cm (12 in) reference tube M31-340 (dimensions in mm)

Fig. 3 raster scan.

Obliquity


|Fy-Gy | ≤ 2,0

 $|Gx-Jx| \leq 2.0$

|Jy-Hy | ≤ 2,0

 $|Hx-Fx| \leq 2.0$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

216

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

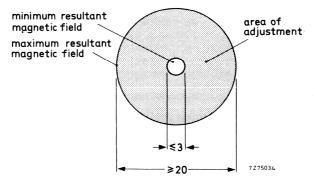


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube diagonal neck diameter		11 cm (12 in) 10 mm
Deflection angle	9	000
Line deflection current for raster scan, at 12 kV		2.50 A (p-p)
Inductance of line coils	4	l80 μH
Field deflection current for raster scan, at 12 kV).45 A (p-p)
Resistance of field coils		1.0 Ω

APPLICATION

This deflection unit is for 31 cm (12 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M31-340 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. **Both the line coils and the field coils are series connected.** The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

* At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

515

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

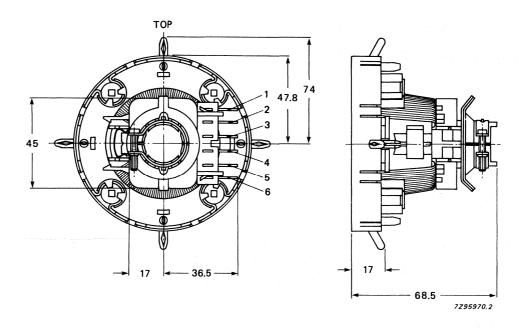
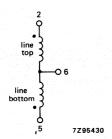



Fig. 1 Deflection unit AT1079/05P.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5	
Inductance	480 μH ± 5%
Resistance	$0.9 \Omega \pm 5\%$
L/R	$533 \mu H/\Omega$
Line deflection current, raster scan (216 mm), at 12 kV	$2.50 \text{ A (p-p)} \pm 5\%$
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	18.0 mH ± 5%
Resistance	11.0 $\Omega \pm 5\%$
L/R	1.64 mH/ Ω
Field deflection current, raster scan (162 mm), at 12 kV	0.45 A (p-p) ± 5%
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

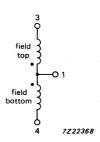


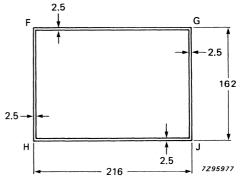
Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 31 cm (12 in) reference tube M31-340 (dimensions in mm)

+Y


deflection
unit

162

Obliquity

Fy-Gy ≤ 2,0	
Gx-Jx ≤ 2,0	
Jy-Hy ≤ 2,0	
14v.Ev.1 < 20	

Fig. 4 The edges of the displayed raster fall within the two rectangles.

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

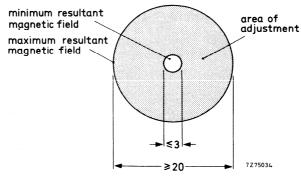


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

Supersedes AT1078/19

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube	
diagonal	31 cm (12 in)
neck diameter	20 mm
Deflection angle	900
Line deflection current for raster scan, at 12 kV	3,50 A (p-p)
Inductance of line coils	247 μΗ
Field deflection current for raster scan, at 12 kV	0,73 A(p-p)
Resistance of field coils	0,73 Ω

APPLICATION

This deflection unit is for 31 cm (12 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M31-340 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. The line coils are parallel connected, the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

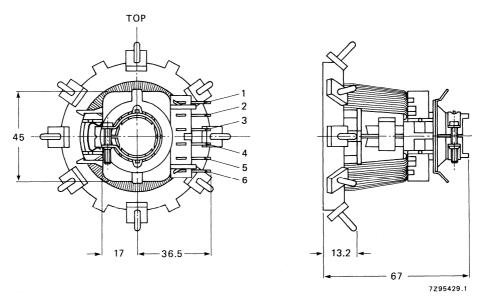
To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

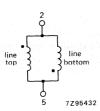
^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).




Fig. 1 Deflection unit AT1079/10.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, parallel connected (Fig. 2a), terminals 2 and 5

Inductance	$247 \mu H \pm 5\%$
Resistance	$0,53~\Omega~\pm 5\%$
L/R	$466~\mu H/\Omega$
Line deflection current, raster scan (216 mm), at 12 kV	$3,50 \text{ A (p-p)} \pm 5\%$
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	6,85 mH ± 5%
Resistance	$4,10 \Omega \pm 5\%$
L/R	1,66 mH/ Ω
Field deflection current, raster scan (162 mm), at 12 kV	$0,73 \text{ A (p-p)} \pm 5\%$
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

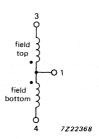


Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.

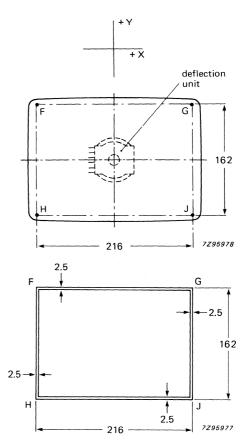
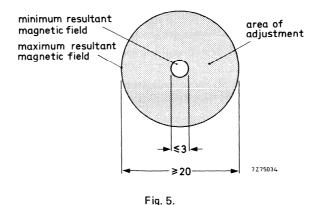

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 31 cm (12 in) reference tube M31-340 (dimensions in mm)

Fig. 3 raster scan.

Obliquity

 $|Fy-Gy| \le 2,0$ $|Gx-Jx| \le 2,0$ $|Jy-Hy| \le 2,0$ $|Hx-Fx| \le 2,0$


Fig. 4 The edges of the displayed raster fall within the two rectangles.

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube	
diagonal	31 cm (12 in)
neck diameter	20 mm
Deflection angle	900
Line deflection current for raster scan, at 12 kV	3.50 A (p-p)
Inductance of line coils	245 μΗ
Field deflection current for raster scan, at 12 kV	0.73 A(p-p)
Resistance of field coils	4.10 Ω

APPLICATION

This deflection unit is for 31 cm (12 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M31-340 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and field coils are parallel connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA

Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

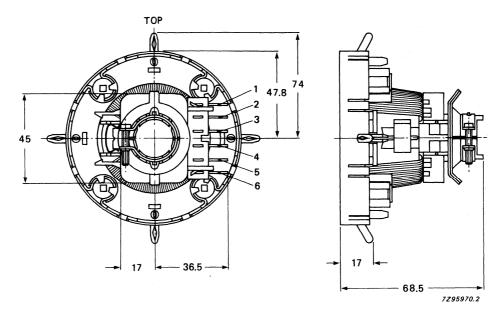


Fig. 1 Deflection unit AT1079/10P.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, parallel connected (Fig. 2a), terminals 2 and 5	
Inductance	245 μH ± 5%
Resistance	$0.53 \Omega \pm 5\%$
L/R	$462 \mu H/\Omega$
Line deflection current, raster scan (216 mm), at 12 kV	$3.50 \text{ A (p-p)} \pm 5\%$
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	6.85 mH ± 5%
Desire the same of	4.40 0 . 50

Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	6.85 mH ± 5%
Resistance	4.10 $\Omega \pm 5\%$
L/R	$1.66~\mathrm{mH/\Omega}$
Field deflection current, raster scan (162 mm), at 12 kV	0.73 A (p-p) ± 5%
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

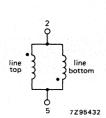


Fig. 2a Line coils.

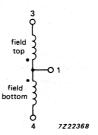


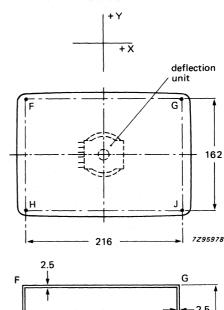
Fig. 2b Field coils.

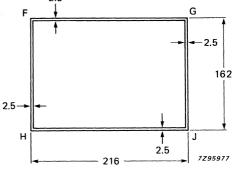
The beginning of the windings is indicated with .

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 31 cm (12 in) reference tube M31-340 (dimensions in mm)

Fig. 3 Raster scan.

Obliquity

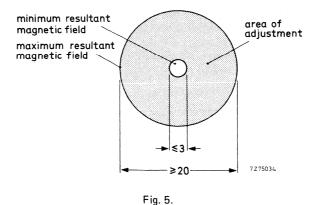

|Fy-Gy | ≤ 2,0


 $|Gx-Jx| \leq 2.0$

|Jy-Hy | ≤ 2,0

 $|Hx-Fx| \leq 2.0$

Fig. 4 The edges of the displayed raster fall within the two rectangles.



For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube diagonal neck diameter	24 cm (9 in) 20 mm
Deflection angle	900
Line deflection current for raster scan, at 12 kV	2.60 A (p-p)
Inductance of line coils	480 μΗ
Field deflection current for raster scan, at 12 kV	0.47 A(p-p)
Resistance of field coils	11.0 Ω

APPLICATION

This deflection unit is for 24 cm (9 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M24-306 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. The line coils are parallel connected, the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

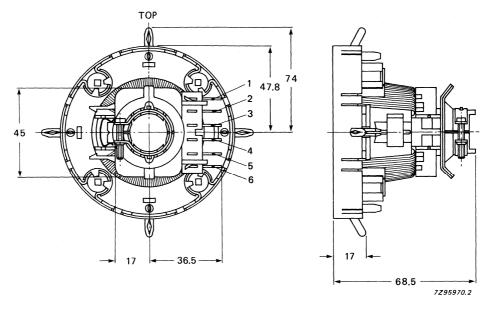
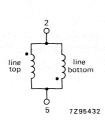



Fig. 1 Deflection unit AT1079/30P.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, parallel connected (Fig. 2a), terminals 2 and 5	
Inductance	480 μ H ± 3,5%
Resistance	$0.90~\Omega~\pm 5\%$
L/R	$533~\mu H/\Omega$
Line deflection current, raster scan (168 mm), at 12 kV	2.60 A (p-p) ± 5%
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	18.0 mH ± 5%
Resistance	$11.0 \Omega \pm 5\%$
L/R	$1.64~\mathrm{mH/}\Omega$
Field deflection current, raster scan (126 mm), at 12 kV	0.47 A (p-p) ± 5%
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

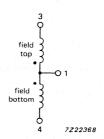
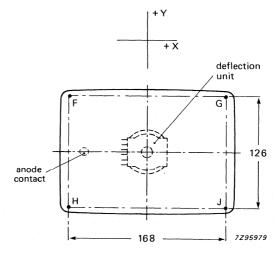
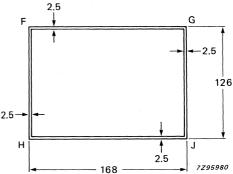



Fig. 2b Field coils.

The beginning of the windings is indicated with .

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 24 cm (9 in) reference tube M24-306 (dimensions in mm).



Obliquity

 $|Fy-Gy| \le 2,0$ $|Gx-Jx| \le 2,0$ $|Jy-Hy| \le 2,0$ $|Hx-Fx| \le 2,0$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

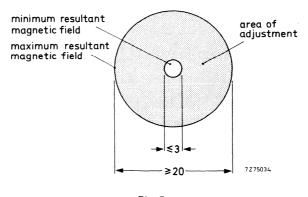


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube diagonal neck diameter	24 cm (9 in) 20 mm
Deflection angle	900
Line deflection current for raster scan, at 12 kV	3.60 A (p-p)
Inductance of line coils	247 μΗ
Field deflection current for raster scan, at 12 kV	0.77 A(p-p)
Resistance of field coils	4.10 Ω

APPLICATION

This deflection unit is for 24 cm (9 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M24-306 to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and field coils are parallel connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The felction unit fits a tube with a neck diameter of max, 20.9 mm.

The unit is provided with solder pins for connection. The pin numbers in Fig. 1 corresponds to those in Fig. 2.

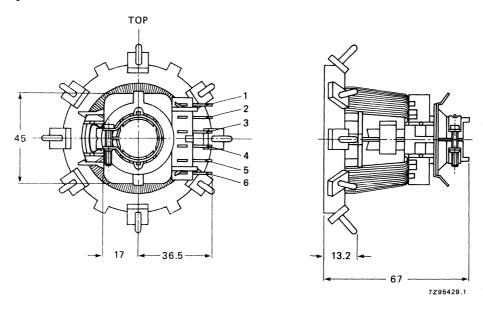


Fig. 1 Deflection unit AT1079/35.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, parallel connected (Fig. 2a), terminals 2 and 5	
Inductance	$247 \mu H \pm 5\%$
Resistance	$0.53~\Omega~\pm 5\%$
L/R	466 μ H/ Ω
Line deflection current, raster scan (168 mm), at 12 kV	$3,60 \text{ A (p-p)} \pm 5\%$
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	6,85 mH ± 5%

F Resistance $4,10 \Omega \pm 5\%$ L/R $1,66~\text{mH}/\Omega$ Field deflection current, raster scan (126 mm), at 12 kV $0.77 \text{ A (p-p)} \pm 5\%$ Maximum DC voltage between terminals of line and field coils 500 V Maximum operating temperature (average copper temperature) 95 °C Storage temperature range -40 to + 75 °C ≤ 1/50

Coupling between line and field coils, at 500 Hz

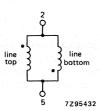


Fig. 2a Line coils.

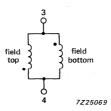
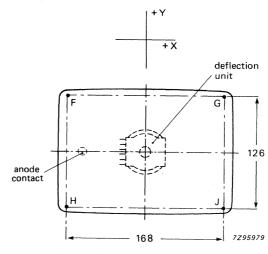
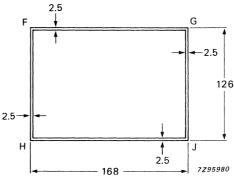



Fig. 2b Field coils.

The beginning of the windings is indicated with .

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 24 cm (9 in) reference tube M24-306 (dimensions in mm).


Fig. 3 Raster scan.

Obliquity

 $|Fy-Gy| \le 2,0$ $|Gx-Jx| \le 2,0$ $|Jy-Hy| \le 2,0$ $|Hx-Fx| \le 2,0$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

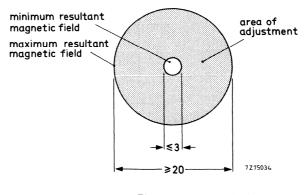


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- · Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

AT1079/40

Supersedes AT1078/04

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube		
diagonal	34 cm (14 in)	
neck diameter	20 mm	
Deflection angle	900	
Line deflection current for raster scan, at 14 kV	3,36 A (p-p)	
Inductance of line coils	310 μΗ	
Field deflection current for raster scan, at 14 kV	0,44 A (p-p)	
Resistance of field coils	13,6 Ω	

APPLICATION

This deflection unit is for 34 cm (14 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M32EAA to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

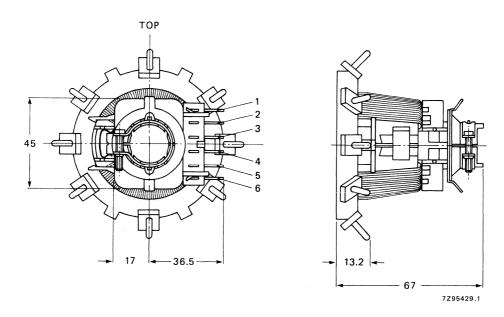
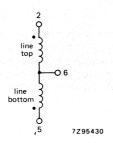


Fig. 1 Deflection unit AT1079/40.


≤ 1/50

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Coupling between line and field coils, at 500 Hz

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5	
Inductance	310 μ H ± 5%
Resistance	$0.66~\Omega~\pm 5\%$
L/R	470 μ H/ Ω
Line deflection current, raster scan (237 mm), at 14 kV	3,36 A (p-p) ± 5%
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	23,8 mH ± 5%
Resistance	13,6 Ω ± 5%
the L/R in the first of the state of the s	1,75 mH/ Ω
Field deflection current, raster scan (178 mm), at 14 kV	$0,44 \text{ A (p-p)} \pm 5\%$
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 oC
Storage temperature range	-40 to + 75 °C

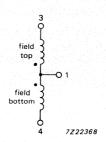


Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.

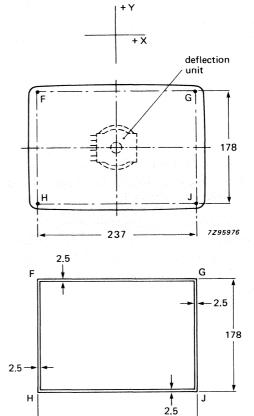
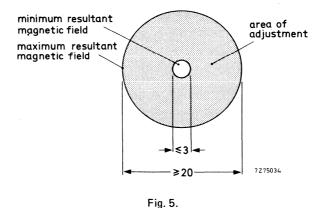

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 34 cm (14 in) reference tube M32EAA (dimensions in mm).

Fig. 3 Raster scan.

Obliquity

Fy-Gy	≤ 2,0
Gx-Jx	≤ 2,0
Jy-Hy	≤ 2,0
Hx-Fx	≤ 2,0

Fig. 4 The edges of the displayed raster fall within the two rectangles.


237

7295975

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube		
diagonal neck diameter	34 cm (14 in) 20 mm	
Deflection angle	900	
Line deflection current for raster scan, at 14 kV	2.88 A (p-p)	
Inductance of line coils	470 μΗ	
Field deflection current for raster scan, at 14 kV	0.48 A (p-p)	
Resistance of field coils	9.70Ω	

APPLICATION

This deflection unit is for 34 cm (14 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M32EAA to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

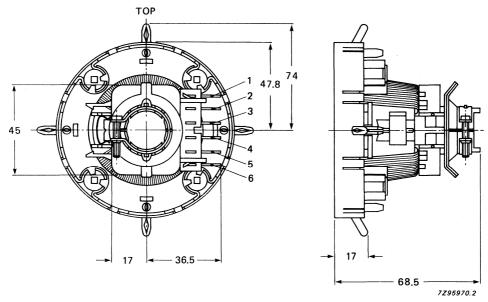
To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

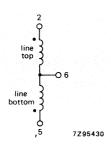
^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).



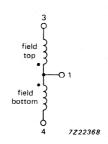

Fig. 1 Deflection unit AT1079/45P.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5	
Inductance	470 μ H ± 3,5%
Resistance	$0.97~\Omega~\pm 5\%$
L/R	$485 \mu H/\Omega$
Line deflection current, raster scan (237 mm), at 14 kV	2.80 A (p-p) ± 5%
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	19.0 mH ± 5%
Resistance	9.70 $\Omega \pm 5\%$
1 /D	4.00 11/0

Field deflection coils, series connected (Fig. 2b) terminals 3 and 4		
Inductance	19.0 mH ± 5%	
Resistance	$9.70 \Omega \pm 5\%$	
L/R	1.92 mH/ Ω	
Field deflection current, raster scan (178 mm), at 14 kV	0.48 A (p-p) ± 5%	
Maximum DC voltage between terminals of line and field coils	500 V	
Maximum operating temperature (average copper temperature)	95 °C	
Storage temperature range	-40 to + 75 °C	
Coupling between line and field coils, at 500 Hz	≤ 1/50	



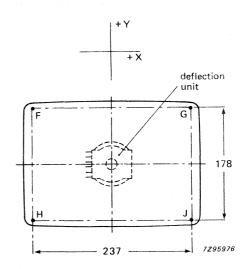
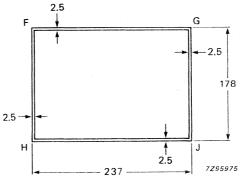

Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.

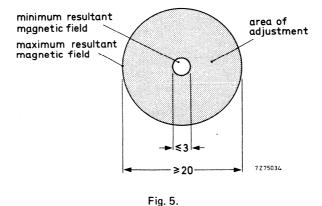
Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 34 cm (14 in) reference tube M32EAA (dimensions in mm).



Obliquity

Fy-Gy	≤ 2,0
Gx-Jx	≤ 2,0
Jy-Hy	≤ 2,0
Hx-Fx	≤ 2,0

Fig. 4 The edges of the displayed raster fall within the two rectangles.



CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

Recommended adjustment procedure

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

DEFLECTION UNIT

• For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Monitor tube	
diagonal	34 cm (14 in)
neck diameter	20 mm
Deflection angle	90o
Line deflection current for raster scan, at 14 kV	5.75 A (p-p)
Inductance of line coils	117 μΗ
Field deflection current for raster scan, at 14 kV	0.49 A (p-p)
Resistance of field coils	$9.90~\Omega$

APPLICATION

This deflection unit is for 34 cm (14 in) 90° monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M32EAA to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. **Both the line coils and the field coils are series connected.** The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA

Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

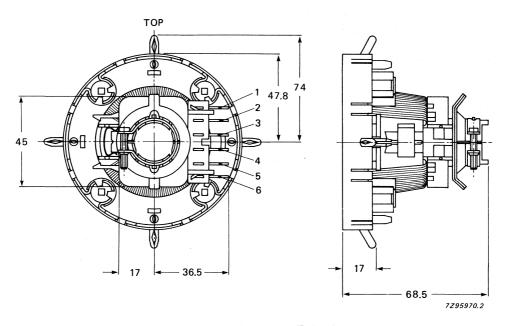
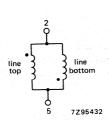


Fig. 1 Deflection unit AT1079/50P.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5		
Inductance	117 μH ± 3,5%	
Resistance	$0.24~\Omega~\pm 5\%$	
L/R	$488~\mu H/\Omega$	
Line deflection current, raster scan (237 mm), at 14 kV	5.75 A (p-p) ± 5%	
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4		
Inductance	19.0 mH ± 5%	
Resistance	$9.90~\Omega~\pm 5\%$	
L/R	$1.92~\mathrm{mH/}\Omega$	
Field deflection current, raster scan (178 mm), at 14 kV	$0.49 \text{ A (p-p)} \pm 5\%$	
Maximum DC voltage between terminals of line and field coils	500 V	
Maximum operating temperature (average copper temperature)	95 °C	


-40 to + 75 °C

≤ 1/50

544

Storage temperature range

Coupling between line and field coils, at 500 Hz

field top 0 1

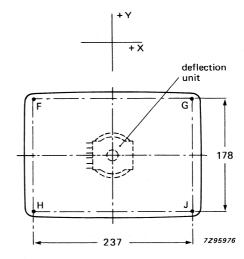
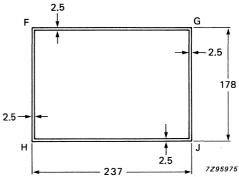

Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with .

Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 34 cm (14 in) reference tube M32EAA (dimensions in mm).



Obliquity

Fy-Gy	≤ 2,0
Gx-Jx	≤ 2,0
Jy-Hy	≤ 2,0
Hx-Fx	≤ 2,0

Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

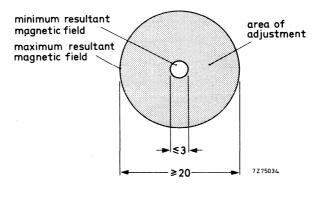


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

Recommended adjustment procedure

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

This data sheet contains advance information and specifications are subject to change without notice.

Supersedes AT1078/10

DEFLECTION UNIT

• For FLAT SQUARE Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Flat Square monitor tube diagonal neck diameter	29 cm (12 in)
neck diameter	20 mm
Deflection angle	900
Line deflection current for raster scan, at 12 kV	3,05 A (p-p)
Inductance of line coils	310 μΗ
Field deflection current for raster scan, at 12 kV	0,39 A (p-p)
Resistance of field coils	13,6 Ω

APPLICATION

This deflection unit is for 29 cm (12 in) 90° Flat Square monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M29EAA to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

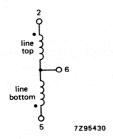
To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

MECHANICAL DATA Dimensions in mm

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).


Fig. 1 Deflection unit AT1079/55.

ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils, series connected (Fig. 2a), terminals 2 and 5

Inductance Resistance L/R	310 μ H ± 3,5% 0,66 Ω ± 5% 470 μ H/ Ω
Line deflection current, raster scan (216 mm), at 12 kV	$3,05 A (p-p) \pm 5\%$
Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	23,8 mH ± 5%
Resistance	13,6 $\Omega \pm 5\%$
L/R	1,75 mH/Ω
Field deflection current, raster scan (162 mm), at 12 kV	$0,39 \text{ A (p-p)} \pm 5\%$
Maximum d.c. voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

field bottom

field

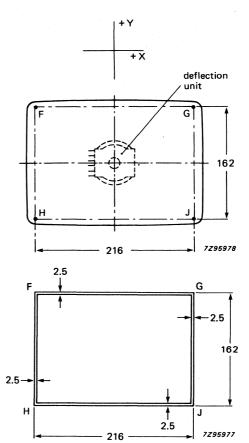
top

Fig. 2a Line coils.

Fig. 2b Field coils.

7222368

The beginning of the windings is indicated with .


Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 31 cm (12 in) reference tube M31-340 (dimensions in mm)

Obliquity

 $|Fy-Gy| \le 2,0$ $|Gx-Jx| \le 2,0$ $|Jy-Hy| \le 2,0$ $|Hx-Fx| \le 2,0$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

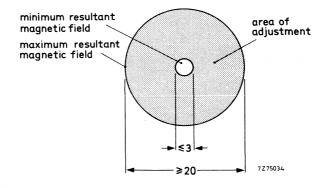


Fig. 5.

For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

Recommended adjustment procedure

- Centre the raster with the two centring magnets.
- Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

AT1079/70

DEFLECTION UNIT

• For FLAT SQUARE Monochrome Data Graphic Displays

QUICK REFERENCE DATA

Flat square monitor tube	
diagonal	34 cm (14 in)
neck diameter	20 mm
Deflection angle	90°
Line deflection current for raster scan, at 14 kV	3.25 A (p-p)
Inductance of line coils	320 μΗ
Field deflection current for raster scan, at 14 kV	0.46 A (p-p)
Resistance of field coils	13.0 Ω

APPLICATION

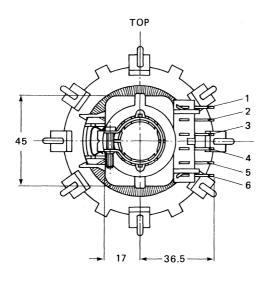
This deflection unit is for 34 cm (14 in) 90° Flat Square monochrome monitor tubes, especially when high resolution is required. It is developed in conjunction with the high resolution display tube M32EBL to provide minimum deflection defocusing and pre-adjusted raster geometry, requiring only small additional adjustments. To utilize the full potential of this deflection unit in respect of deflection defocusing, dynamic focusing has to be applied.

DESCRIPTION

The deflection unit is of the hybrid type, with saddle wound line coils and toroidal wound field coils. Both the line coils and the field coils are series connected. The unit has a non-magnetic metal clamping ring for fixing to the tube neck. Provisions are made for beam centring and raster correction*. The unit meets the self-extinguishing and non-dripping requirements of IEC 65 and UL1413.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.


To orient the raster correctly, the unit may be rotated by hand on the neck of the tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position; the tightening torque is 0.6 ± 0.2 Nm.

^{*} At delivery of the deflection unit the beam centring and raster correction magnets are pre-adjusted on a reference tube.

Dimensions in mm **MECHANICAL DATA**

The deflection unit fits a tube with a neck diameter of max. 20,9 mm.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the diagram (Fig. 2).

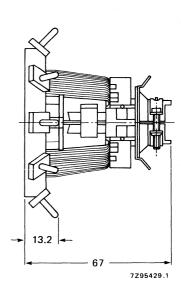
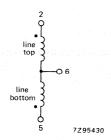


Fig. 1 Deflection unit AT1079/70.


ELECTRICAL DATA

The electrical values apply at an ambient temperature of 25 °C.

Line deflection coils,	series connected	(Fig. 2a)	, terminals 2	and 5
------------------------	------------------	-----------	---------------	-------

Inductance	320 μH ± 5%
Resistance	$0.61~\Omega~\pm~5\%$
L/R	$525~\mu H/\Omega$
Line deflection current, raster scan (237 mm), at 14 kV	3.25 A (p-p) ± 5%

Field deflection coils, series connected (Fig. 2b) terminals 3 and 4	
Inductance	23.8 mH ± 5%
Resistance	13.0 Ω ± 5%
L/R	$1.83~\mathrm{mH/}\Omega$
Field deflection current, raster scan (178 mm), at 14 kV	0.46 A (p-p) ± 5%
Maximum DC voltage between terminals of line and field coils	500 V
Maximum operating temperature (average copper temperature)	95 °C
Storage temperature range	-40 to + 75 °C
Coupling between line and field coils, at 500 Hz	≤ 1/50

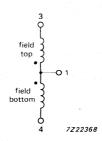
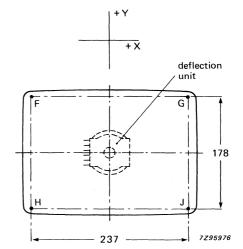
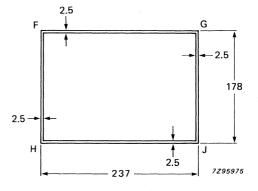


Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with •.


Geometric distortion, measured with beam centring and raster correction magnets pre-adjusted on a 34 cm (14 in) Flat Square reference tube M32EBL (dimensions in mm).


Fig. 3 raster scan.

Obliquity

 $|Fy-Gy| \le 2.0$ $|Gx-Jx| \le 2.0$ $|Jy-Hy| \le 2.0$ $|Hx-Fx| \le 2.0$

Fig. 4 The edges of the displayed raster fall within the two rectangles.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The torque on the magnets is 50 to 200 mNm.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

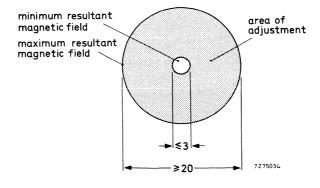


Fig. 5.

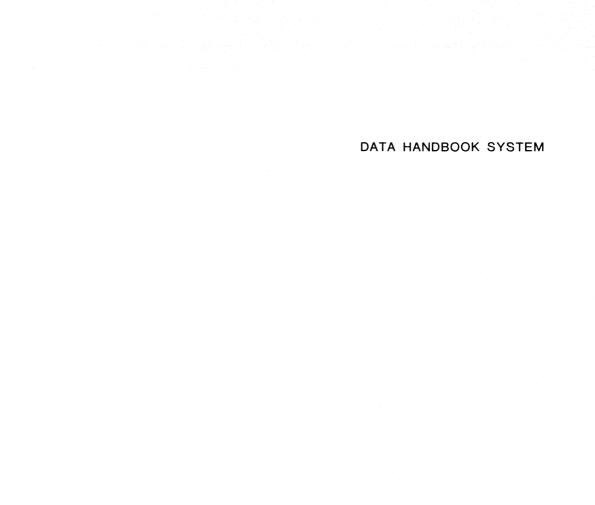
For raster correction

Eight plastic bonded Ferroxdure magnets are mounted to the back of the front rim to correct raster distortion. See also Fig. 1.

Recommended adjustment procedure

- Centre the raster with the two centring magnets.
- · Adjust the east-west raster correction magnets.
- Adjust the north-south raster correction magnets.
- Adjust the corner raster correction magnets.
- If required, repeat these adjustments in the same sequence.
- Lock the centring and raster correction magnets with locking paint.

CONVERSION LIST




CONVERSION LIST

Conversion of catalogue number to type number (deflection units only)

catalogue number	type number	page
3122 137 14610	AT1040/04	109
18690	AT1039/00	447
18700	AT1039/01	447
19620	AT1077/02	119
19720	AT1077/01	115/495
20430	AT1039/03	455
3138 137 30040 30060 30630 30990 31170	AT1033/03 AT1077/01A AT1079/05 AT1077/04A AT1079/00 AT1079/35	499 511 503 507 531
31210	AT1079/70	551
31220	AT1079/05P	515
31230	AT1079/10P	523
31240	AT1079/30P	527
31250	AT1079/45P	539
31260	AT1079/50P	543
3320 603 00050	AT1079/10	519
00120	AT1079/55	547
00380	AT1039/09	471
00470	AT1039/08	471
00521	AT1037/01	431
00540	AT1039/20	479
00550	AT1039/21	479
00570	AT1079/40	535
00730	AT1039/39	487
00812	AT1039/05	463
00820	AT1037/11	439

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to vii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
T4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Т6	Geiger-Müller tubes
Т8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches
T16	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

3 1	Small-signal silicon diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes tuner diodes, rectifier diodes
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	PowerMos transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S12	Surface acoustic wave devices
S13	Semiconductor sensors
S14	Liquid Crystal Displays

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of handbooks comprises:

IC01 Radio, audio and associated systems

Bipolar, MOS

IC02a/b Video and associated systems

Bipolar, MOS

IC03 Integrated circuits for telephony

Bipolar, MOS

IC04 HE4000B logic family

CMOS

HE4000B logic family - uncased ICs IC05N

CMOS

IC06 High-speed CMOS; PC74HC/HCT/HCU

Logic family

IC08 ECL 10K and 100K logic families

IC09N TTL logic series

IC10 Memories

MOS, TTL, ECL

IC11 **Linear Products**

Supplement

to IC11

IC12

Linear Products

IC13

Semi-custom

1²C-bus compatible ICs

Programmable Logic Devices (PLD)

IC14 Microcontrollers and peripherals

Bipolar, MOS

IC15 FAST TTL logic series

IC16 CMOS integrated circuits for clocks and watches

IC17 Integrated Services Digital Networks (ISDN) not yet issued

IC18 Microprocessors and peripherals

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C2	Television tuners, coaxial aerial input assemblies
C3	Loudspeakers
C4	Ferroxcube potcores, square cores and cross cores
C5	Ferroxcube for power, audio/video and accelerators
C6	Synchronous motors and gearboxes
C7	Variable capacitors
C8	Variable mains transformers
C9	Piezoelectric quartz devices
C11	Varistors, thermistors and sensors
C12	Potentiometers, encoders and switches
C13	Fixed resistors
C14	Electrolytic and solid capacitors
C15	Ceramic capacitors
C16	Permanent magnet materials
C17	Stepping motors and associated electronics
C18	Direct current motors
C19	Piezoelectric ceramics
C20	Wire-wound components for TVs and monitors
C22	Film capacitors

			менте тем се такон посторо или и подал на стор на при възвания подал на гори	

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 - 7141 to 7747.

Australia: PHILIPS INDUSTRIES LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322.

Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN, Tel. (0222) 60 101-820.

Belgium: N.V. PHILIPS PROF. SYSTEMS - Elcoma Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 52 56 111.

Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600.

CONSTANTA-IBRAPE; (Passive Devices & Materials): Av. Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, Tel. (011) 459-8211.

Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 77 38 16.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. (01) 2497624.

Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. (90) 1 72 71.

France: RTC-COMPELEC, 117 Quai du Président Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel. (01) 40 93 80 00.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0,

Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 48 94 339/48 94 911.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-2451 21.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY – 400 025, Tel. (022) 49 30 311/49 30 590.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Elcoma Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.

Italy: PHILIPS S.p.A., Div. Componenti Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.

Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.

Malaysia: PHILIPS MALAYSIA SDN BHD, Elcoma Div., 345 Jalan Gelugor, 11700 PULAU PINANG, Tel. (04) 870044.

Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.

Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 7837 49

New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.

Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. (02) 68 02 00.

Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 72 57 72.

Peru: CADESA, Av. Pardo y Aliaga No. 695, 6th Floor, San Isidro, LIMA 27, Tel. (014) 70 70 80.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 86 89 51 to 59.

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 35 02 000.

South Africa: S.A. PHILIPS (Pty) LTD., EDAC Div., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. (011) 402-4600/07.

Spain: MINIWATT S.A., Balmes 22, 08007 BARCELONA, Tel. (03) 301 63 12.

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM, Tel. (08) 7821 000.

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 488 22 11.

Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 71 20 500.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad., No. 78-80, 80090 Ayazpasa ISTANBUL, Tel. (01) 1435910.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 580 6633.

United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE; R.I. 02876, Tel. (401) 762-9000.

(Colour picture tubes – Monochrome & Colour display tubes) PHILIPS DISPLAY COMPONENTS, 50 Johnston St., SENECA FALLS, N.Y. 13148, Tel. (315) 568-5881.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000.

(Passive & Electromech. Dev.) MEPCO/CENTRALAB, INC., 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404, Tel. (305) 881-3200.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 985395.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Components Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

A OFO

© Philips Export B.V. 1988

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands